Fluid registration of diffusion tensor images using information theory

被引:81
|
作者
Chiang, Ming-Chang [1 ]
Leow, Alex D. [1 ]
Klunder, Andrea D. [1 ]
Dutton, Rebecca A. [1 ]
Barysheva, Marina [1 ]
Rose, Stephen E. [2 ]
McMahon, Katie L. [2 ]
de Zubicaray, Greig I. [2 ]
Toga, Arthur W. [1 ]
Thompson, Paul M. [1 ]
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90095 USA
[2] Univ Queensland, Ctr Magnet Resonance, Brisbane, Qld 4072, Australia
关键词
diffusion tensor imaging (DTI); fluid registration; high angular resolution diffusion imaging (HARDI); Kullback-Leibler divergence;
D O I
10.1109/TMI.2007.907326
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We apply an information -theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large -deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
引用
收藏
页码:442 / 456
页数:15
相关论文
共 50 条
  • [41] Variational Registration of Tensor-Valued Images
    Barbieri, Sebastiano
    Welk, Martin
    Weickert, Joachim
    2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3, 2008, : 107 - 112
  • [42] Manifold based analysis of diffusion tensor images using Isomaps
    Verma, Ragini
    Davatzikos, Christos
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 790 - +
  • [43] Reduction of noise in diffusion tensor images using anisotropic smoothing
    Ding, ZH
    Gore, JC
    Anderson, AW
    MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (02) : 485 - 490
  • [44] Visualizing diffusion tensor MR images using streamtubes and streamsurfaces
    Zhang, S
    Demiralp, Ç
    Laidlaw, DH
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2003, 9 (04) : 454 - 462
  • [45] Information-Theoretic Registration with Explicit Reorientation of Diffusion-Weighted Images
    Jensen, Henrik G.
    Lauze, Francois
    Darkner, Sune
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2022, 64 (01) : 1 - 16
  • [46] Information-Theoretic Registration with Explicit Reorientation of Diffusion-Weighted Images
    Henrik G. Jensen
    François Lauze
    Sune Darkner
    Journal of Mathematical Imaging and Vision, 2022, 64 : 1 - 16
  • [47] Evaluation on diffusion tensor image registration algorithms
    Yi Wang
    Qian Yu
    Zhexing Liu
    Tao Lei
    Zhe Guo
    Min Qi
    Yangyu Fan
    Multimedia Tools and Applications, 2016, 75 : 8105 - 8122
  • [48] Evaluation on diffusion tensor image registration algorithms
    Wang, Yi
    Yu, Qian
    Liu, Zhexing
    Lei, Tao
    Guo, Zhe
    Qi, Min
    Fan, Yangyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (13) : 8105 - 8122
  • [49] Diffusion Tensor Field Registration in the Presence of Uncertainty
    Irfanoglu, Mustafa Okan
    Koay, Cheng Guan
    Pajevic, Sinisa
    Machiraju, Raghu
    Basser, Peter J.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT I, PROCEEDINGS, 2009, 5761 : 181 - +
  • [50] Diffusion tensor orientation matching for image registration
    Curran, KM
    Alexander, DC
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 149 - 156