Fluid registration of diffusion tensor images using information theory

被引:81
|
作者
Chiang, Ming-Chang [1 ]
Leow, Alex D. [1 ]
Klunder, Andrea D. [1 ]
Dutton, Rebecca A. [1 ]
Barysheva, Marina [1 ]
Rose, Stephen E. [2 ]
McMahon, Katie L. [2 ]
de Zubicaray, Greig I. [2 ]
Toga, Arthur W. [1 ]
Thompson, Paul M. [1 ]
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90095 USA
[2] Univ Queensland, Ctr Magnet Resonance, Brisbane, Qld 4072, Australia
关键词
diffusion tensor imaging (DTI); fluid registration; high angular resolution diffusion imaging (HARDI); Kullback-Leibler divergence;
D O I
10.1109/TMI.2007.907326
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We apply an information -theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large -deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
引用
收藏
页码:442 / 456
页数:15
相关论文
共 50 条
  • [31] Information theory based registration and segmentation of medical images
    Kuczynski, K
    Mikolajczak, P
    OPTICAL METHODS, SENSORS, IMAGE PROCESSING, AND VISUALIZATION IN MEDICINE, 2003, 5505 : 189 - 198
  • [32] A method for non-rigid registration of diffusion tensor magnetic resonance images
    Duda, Jeffrey T.
    Rivera, Mariano
    Alexander, Daniel C.
    Gee, James C.
    Proceedings of SPIE - The International Society for Optical Engineering, 2003, 5032 II : 1186 - 1196
  • [33] Matching of diffusion tensor images using gabor features
    Verma, R
    Davatzikos, C
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 396 - 399
  • [34] Repairing and inpainting damaged images using diffusion tensor
    Signal, Image Processing and Pattern Recognition Laboratory, TSIRF , Tunisia
    Int. J. Comput. Sci. Issues, 4 4-3 (150-156):
  • [35] Comparative evaluation of voxel similarity measures for affine registration of diffusion tensor MR images
    Pollari, Mika
    Neuvonen, Tuomas
    Lilja, Mikko
    Lotjonen, Jyrki
    2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 768 - +
  • [36] A method for non-rigid registration of diffusion tensor magnetic resonance. images
    Duda, JT
    Rivera, M
    Alexander, DC
    Gee, JC
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1186 - 1196
  • [37] Diffusion-tensor image registration
    Gee, JC
    Alexander, DC
    VISUALIZATION AND PROCESSING OF TENSOR FIELDS, 2006, : 327 - +
  • [38] Regularization of diffusion tensor images
    Cisternas, J.
    Asahi, T.
    Galvez, M.
    Rojas, G.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 935 - +
  • [39] Diffusion Tensor Image Registration with Combined Tract and Tensor Features
    Wang, Qian
    Yap, Pew-Thian
    Wu, Guorong
    Shen, Dinggang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2011), PT II, 2011, 6892 : 200 - +
  • [40] The theory of information images: Modeling based on diffusion equations
    Petukhov, Alexandr Y.
    Polevaya, Sofia A.
    Yakhno, Vladimir G.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (06)