Fluid registration of diffusion tensor images using information theory

被引:81
|
作者
Chiang, Ming-Chang [1 ]
Leow, Alex D. [1 ]
Klunder, Andrea D. [1 ]
Dutton, Rebecca A. [1 ]
Barysheva, Marina [1 ]
Rose, Stephen E. [2 ]
McMahon, Katie L. [2 ]
de Zubicaray, Greig I. [2 ]
Toga, Arthur W. [1 ]
Thompson, Paul M. [1 ]
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90095 USA
[2] Univ Queensland, Ctr Magnet Resonance, Brisbane, Qld 4072, Australia
关键词
diffusion tensor imaging (DTI); fluid registration; high angular resolution diffusion imaging (HARDI); Kullback-Leibler divergence;
D O I
10.1109/TMI.2007.907326
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We apply an information -theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large -deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
引用
收藏
页码:442 / 456
页数:15
相关论文
共 50 条
  • [1] Multi-channel registration of diffusion tensor images using directional information
    Rohde, GK
    Pajevic, S
    Pierpaoli, C
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 712 - 715
  • [2] Registration of diffusion tensor images
    Zhang, H
    Yushkevich, PA
    Gee, JC
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, : 842 - 847
  • [3] Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information
    Van Hecke, Wim
    Leemans, Alexander
    D'Agostino, Erniliano
    De Backer, Steve
    Vandervliet, Evert
    Parizel, Paul M.
    Sijbers, Jan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (11) : 1598 - 1612
  • [4] Affine registration of diffusion tensor MR images
    Pollari, Mika
    Neuvonen, Tuomas
    Lotjonen, Jyrki
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 2, 2006, 4191 : 629 - 636
  • [5] Simultaneous Tensor and Fiber Registration (STFR) for Diffusion Tensor Images of the Brain
    Xue, Zhong
    Wong, Stephen T. C.
    AUGMENTED REALITY ENVIRONMENTS FOR MEDICAL IMAGING AND COMPUTER-ASSISTED INTERVENTIONS, 2013, 8090 : 1 - 8
  • [6] Adaptive registration of diffusion tensor images on lie groups
    Liu, Wei
    Chen, LeiTing
    Cai, HongBin
    Qiu, Hang
    Fei, NanXi
    OPTICAL REVIEW, 2016, 23 (04) : 614 - 627
  • [7] An algebraic solution to rigid registration of diffusion tensor images
    Goh, Alvina
    Vidal, Rene
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 642 - +
  • [8] Adaptive registration of diffusion tensor images on lie groups
    Wei Liu
    LeiTing Chen
    HongBin Cai
    Hang Qiu
    Nanxi Fei
    Optical Review, 2016, 23 : 614 - 627
  • [9] A VARIATIONAL PROBLEM ARISING IN REGISTRATION OF DIFFUSION TENSOR IMAGES
    Han, Huan
    Zhou, Huan-Song
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (02) : 539 - 554
  • [10] A VARIATIONAL PROBLEM ARISING IN REGISTRATION OF DIFFUSION TENSOR IMAGES
    韩欢
    周焕松
    Acta Mathematica Scientia, 2017, (02) : 539 - 554