Incompressible;
Non-resistive;
Hall-MHD system;
Axially symmetric;
Regularity criterion;
One component;
GLOBAL EXISTENCE;
WELL-POSEDNESS;
DECAY;
MAGNETOHYDRODYNAMICS;
EQUATIONS;
STABILITY;
EULER;
D O I:
10.1007/s10440-022-00519-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A one-component regularity criterion for the non-resistive axially symmetric Hall-MHD system is given in this paper. More precisely, we show that strong solutions to a family of axially symmetric initial data, whose velocity and current density have trivial swirl components, could be smoothly extended beyond a possible blow-up time T-* if and only if the swirl component of the magnetic field h(theta) satisfies a Beale-Kato-Majda-type criterion. See (1.5) below. This criterion is not trivial even if the velocity field vanishes since the quantity h(theta)/r satisfies a partial Burgers' equation in this situation.
机构:
Univ Mostaganem, POB 270, Mostaganem 27000, Algeria
Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, ItalyUniv Mostaganem, POB 270, Mostaganem 27000, Algeria