On a Single-Component Regularity Criterion for the Non-resistive Axially Symmetric Hall-MHD System

被引:0
|
作者
Li, Zijin [1 ,2 ]
Yang, Meixian [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Nanjing Xinda Inst Safety & Emergency Management, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible; Non-resistive; Hall-MHD system; Axially symmetric; Regularity criterion; One component; GLOBAL EXISTENCE; WELL-POSEDNESS; DECAY; MAGNETOHYDRODYNAMICS; EQUATIONS; STABILITY; EULER;
D O I
10.1007/s10440-022-00519-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A one-component regularity criterion for the non-resistive axially symmetric Hall-MHD system is given in this paper. More precisely, we show that strong solutions to a family of axially symmetric initial data, whose velocity and current density have trivial swirl components, could be smoothly extended beyond a possible blow-up time T-* if and only if the swirl component of the magnetic field h(theta) satisfies a Beale-Kato-Majda-type criterion. See (1.5) below. This criterion is not trivial even if the velocity field vanishes since the quantity h(theta)/r satisfies a partial Burgers' equation in this situation.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A remark on regularity criterion for the 3D Hall-MHD equations based on the vorticity
    Ye, Zhuan
    Zhang, Zujin
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 301 : 70 - 77
  • [22] A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations
    Alghamdi, A. M.
    Gala, S.
    Ragusa, M. A.
    AIMS MATHEMATICS, 2018, 3 (04): : 565 - 574
  • [23] Global regularity for the 3D generalized Hall-MHD system
    Pan, Nana
    Ma, Caochuan
    Zhu, Mingxuan
    APPLIED MATHEMATICS LETTERS, 2016, 61 : 62 - 66
  • [24] Uniform regularity for a density-dependent incompressible Hall-MHD system
    Fan, Jishan
    Zhou, Yong
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [25] A new regularity criterion for the 3D generalized Hall-MHD system with β ∈ (1/2,1]
    Pan, Nana
    Zhu, Mingxuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 604 - 611
  • [26] UNIFORM REGULARITY AND VANISHING VISCOSITY LIMIT FOR THE INCOMPRESSIBLE NON-RESISTIVE MHD SYSTEM WITH TRANSVERSE MAGNETIC FIELD
    Liu, Cheng-Jie
    Xie, Feng
    Yang, Tong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (7-8) : 2725 - 2750
  • [27] Remark on regularity criterion for the 3D Hall-MHD equations involving only the vorticity
    Wang, Wenjuan
    Ye, Zhuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [28] Beale–Kato–Majda Regularity Criterion of Smooth Solutions for the Hall-MHD Equations with Zero Viscosity
    Sadek Gala
    Eugeny Galakhov
    Maria Alessandra Ragusa
    Olga Salieva
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 229 - 241
  • [29] Remark on regularity criterion for the 3D Hall-MHD equations involving only the vorticity
    Wenjuan Wang
    Zhuan Ye
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [30] The blow-up criterion via horizontal component of velocity for the Hall-MHD equations
    Yuan, Baoquan
    Liu, Kunhong
    APPLICABLE ANALYSIS, 2016, 95 (11) : 2578 - 2589