Stable distributions in fragmentation processes

被引:6
|
作者
Rodgers, GJ
Hassan, MK
机构
[1] Department of Physics, Brunel University, Uxbridge Middlesex
[2] Department of Physics, Shahjalal Sci. and Technol. Univ., Sylhet
来源
PHYSICA A | 1996年 / 233卷 / 1-2期
关键词
fragmentation; scaling; statistical physics;
D O I
10.1016/S0378-4371(96)00234-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce three models of fragmentation in which the largest fragment in the system can be broken at each time step with a fixed probability, p. We solve these models exactly in the long time limit to reveal stable time-invariant (scaling) solutions which depend on p and the precise details on the fragmentation process. Various features of these models are compared with those of conventional fragmentation models.
引用
收藏
页码:19 / 30
页数:12
相关论文
共 50 条
  • [31] Scale-free cluster distributions from conserving merging-fragmentation processes
    Ferkinghoff-Borg, J
    Jensen, MH
    Mathiesen, J
    Olesen, P
    EUROPHYSICS LETTERS, 2006, 73 (03): : 422 - 428
  • [32] INVESTIGATION OF ENERGY FRAGMENTATION DISTRIBUTIONS
    BIEBL, KJ
    SCHREIBE.HJ
    GENSCH, U
    PHYSICS LETTERS B, 1972, B 42 (02) : 221 - &
  • [33] Probability distributions in nuclear fragmentation
    Dorso, CO
    Lopez, JA
    Wang, XY
    PHYSICAL REVIEW C, 1998, 58 (05): : 2986 - 2989
  • [34] Positive definite distributions and subspaces of L-p with applications to stable processes
    Koldobsky, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (03): : 344 - 353
  • [35] On the determinism of the distributions of multiple Markov non-Gaussian symmetric stable processes
    Kojo, K
    NAGOYA MATHEMATICAL JOURNAL, 1998, 150 : 177 - 196
  • [36] HITTING DISTRIBUTIONS OF α-STABLE PROCESSES VIA PATH CENSORING AND SELF-SIMILARITY
    Kyprianou, Andreas E.
    Carlos Pardo, Juan
    Watson, Alexander R.
    ANNALS OF PROBABILITY, 2014, 42 (01): : 398 - 430
  • [37] GATING IN FRAGMENTATION PROCESSES
    BARZ, HW
    BONDORF, JP
    BOTWINA, AS
    DONANGELO, R
    MISHUSTIN, IN
    SCHULZ, H
    SNEPPEN, K
    NUCLEAR PHYSICS A, 1992, 545 (1-2) : C213 - C222
  • [38] FLUCTUATIONS IN FRAGMENTATION PROCESSES
    ESIPOV, SE
    GORKOV, LP
    NEWMAN, TJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (04): : 787 - 806
  • [39] Homogeneous fragmentation processes
    Bertoin, J
    PROBABILITY THEORY AND RELATED FIELDS, 2001, 121 (03) : 301 - 318
  • [40] Homogeneous fragmentation processes
    Jean Bertoin
    Probability Theory and Related Fields, 2001, 121 : 301 - 318