Homogeneous fragmentation processes

被引:67
|
作者
Bertoin, J
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75013 Paris, France
[2] Univ Paris 06, Inst Univ France, F-75013 Paris, France
[3] CNRS, UMR 7599, F-75013 Paris, France
关键词
D O I
10.1007/s004400100152
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this work is to define and study homogeneous fragmentation processes in continuous time, which are meant to describe the evolution of an object that breaks down randomly into pieces as time passes. Roughly, we show that the dynamics of such a fragmentation process are determined by some exchangeable measure on (he set of partitions of N, and result from the combination of two different phenomena: a continuous erosion and sudden dislocations. In particular, we determine the class of fragmentation measures which can arise in this setting, and investigate the evolution of the size of the fragment that contains a point picked at random at the initial time.
引用
收藏
页码:301 / 318
页数:18
相关论文
共 50 条
  • [1] Homogeneous fragmentation processes
    Jean Bertoin
    Probability Theory and Related Fields, 2001, 121 : 301 - 318
  • [2] Survival of homogeneous fragmentation processes with killing
    Knobloch, Robert
    Kyprianou, Andreas E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (02): : 476 - 491
  • [3] One-Sided FKPP Travelling Waves for Homogeneous Fragmentation Processes
    Knobloch, Robert
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (02) : 895 - 931
  • [4] One-Sided FKPP Travelling Waves for Homogeneous Fragmentation Processes
    Robert Knobloch
    Journal of Theoretical Probability, 2018, 31 : 895 - 931
  • [5] TRAVELING WAVES AND HOMOGENEOUS FRAGMENTATION
    Berestycki, J.
    Harris, S. C.
    Kyprianou, A. E.
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (05): : 1749 - 1794
  • [6] Bainite: Fragmentation of crystallographically homogeneous domains
    Pak, Junhak
    Suh, Dong Woo
    Bhadeshia, Harshad K. D. H.
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2012, 103 (04) : 476 - 482
  • [7] The Largest Fragment of a Homogeneous Fragmentation Process
    Andreas Kyprianou
    Francis Lane
    Peter Mörters
    Journal of Statistical Physics, 2017, 166 : 1226 - 1246
  • [8] The Largest Fragment of a Homogeneous Fragmentation Process
    Kyprianou, Andreas
    Lane, Francis
    Morters, Peter
    JOURNAL OF STATISTICAL PHYSICS, 2017, 166 (05) : 1226 - 1246
  • [9] GATING IN FRAGMENTATION PROCESSES
    BARZ, HW
    BONDORF, JP
    BOTWINA, AS
    DONANGELO, R
    MISHUSTIN, IN
    SCHULZ, H
    SNEPPEN, K
    NUCLEAR PHYSICS A, 1992, 545 (1-2) : C213 - C222
  • [10] FLUCTUATIONS IN FRAGMENTATION PROCESSES
    ESIPOV, SE
    GORKOV, LP
    NEWMAN, TJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (04): : 787 - 806