Ultrasound-Based Characterization of Prostate Cancer Using Joint Independent Component Analysis

被引:15
|
作者
Imani, Farhad [1 ]
Ramezani, Mahdi [2 ]
Nouranian, Saman [2 ]
Gibson, Eli [3 ]
Khojaste, Amir [4 ]
Gaed, Mena [3 ]
Moussa, Madeleine [5 ]
Gomez, Jose A. [5 ]
Romagnoli, Cesare [5 ]
Leveridge, Michael [6 ]
Chang, Silvia [7 ]
Fenster, Aaron [3 ]
Siemens, D. Robert [6 ]
Ward, Aaron D. [8 ]
Mousavi, Parvin [4 ]
Abolmaesumi, Purang [2 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada
[3] Univ Western Ontario, Robarts Res Inst, London, ON N6A 3K7, Canada
[4] Queens Univ, Sch Comp, Kingston, ON K7L 3N6, Canada
[5] London Hlth Sci Ctr, London, ON, Canada
[6] Kingston Gen Hosp, Kingston, ON K7L 2V7, Canada
[7] Vancouver Gen Hosp, Vancouver, BC, Canada
[8] Univ Western Ontario, London, ON N6A 3K7, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Joint independent component analysis (jICA); prostate cancer (PCa); RF time series; RADICAL PROSTATECTOMY; GLEASON SCORE; TRANSRECTAL ULTRASOUND; TISSUE CLASSIFICATION; TARGETED BIOPSY; ELASTOGRAPHY; DIAGNOSIS; IMPACT; SERIES; US;
D O I
10.1109/TBME.2015.2404300
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: This paper presents the results of a new approach for selection of RF time series features based on joint independent component analysis for in vivo characterization of prostate cancer. Methods: We project three sets of RF time series features extracted from the spectrum, fractal dimension, and the wavelet transform of the ultrasound RF data on a space spanned by five joint independent components. Then, we demonstrate that the obtained mixing coefficients from a group of patients can be used to train a classifier, which can be applied to characterize cancerous regions of a test patient. Results: In a leave-one-patient-out cross validation, an area under receiver operating characteristic curve of 0.93 and classification accuracy of 84% are achieved. Conclusion: Ultrasound RF time series can be used to accurately characterize prostate cancer, in vivo without the need for exhaustive search in the feature space. Significance: We use joint independent component analysis for systematic fusion of multiple sets of RF time series features, within a machine learning framework, to characterize PCa in an in vivo study.
引用
收藏
页码:1796 / 1804
页数:9
相关论文
共 50 条
  • [1] Ultrasound-Based Characterization of Prostate Cancer: An in vivo Clinical Feasibility Study
    Imani, Farhad
    Abolmaesumi, Purang
    Gibson, Eli
    Galesh-Khale, Amir Khojaste
    Gaed, Mena
    Moussa, Madeleine
    Gomez, Jose A.
    Romagnoli, Cesare
    Siemens, D. Robert
    Leviridge, Michael
    Chang, Silvia
    Fenster, Aaron
    Ward, Aaron D.
    Mousavi, Parvin
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 : 279 - 286
  • [2] Pharmacokinetic analysis of prostate cancer using independent component analysis
    Mehrabian, Hatef
    Da Rosa, Michael
    Haider, Masoom A.
    Martel, Anne L.
    MAGNETIC RESONANCE IMAGING, 2015, 33 (10) : 1236 - 1245
  • [3] Developments in Ultrasound-Based Imaging for Prostate Cancer Detection
    Vassallo, Reid
    Mannas, Miles P.
    Salcudean, Septimiu E.
    Black, Peter C.
    PROSTATE, 2025,
  • [4] Ultrasound-Based Detection of Prostate Cancer Using Automatic Feature Selection with Deep Belief Networks
    Azizi, Shekoofeh
    Imani, Farhad
    Zhuang, Bo
    Tahmasebi, Amir
    Kwak, Jin Tae
    Xu, Sheng
    Uniyal, Nishant
    Turkbey, Baris
    Choyke, Peter
    Pinto, Peter
    Wood, Bradford
    Moradi, Mehdi
    Mousavi, Parvin
    Abolmaesumi, Purang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 : 70 - 77
  • [5] Ultrasound-Based Method for the Identification of Novel MicroRNA Biomarkers in Prostate Cancer
    Cornice, Jessica
    Capece, Daria
    Di Vito Nolfi, Mauro
    Di Padova, Monica
    Compagnoni, Chiara
    Verzella, Daniela
    Di Francesco, Barbara
    Vecchiotti, Davide
    Flati, Irene
    Tessitore, Alessandra
    Alesse, Edoardo
    Barbato, Gaetano
    Zazzeroni, Francesca
    GENES, 2021, 12 (11)
  • [6] Ultrasound-based predication of prostate cancer in MRI-guided biopsy
    Uniyal, Nishant
    Imani, Farhad
    Tahmasebi, Amir
    Agarwal, Harsh
    Bharat, Shyam
    Yan, Pingkun
    Kruecker, Jochen
    Kwak, Jin Tae
    Xu, Sheng
    Wood, Bradford
    Pinto, Peter
    Turkbey, Baris
    Choyke, Peter
    Abolmaesumi, Purang
    Mousavi, Parvin
    Moradi, Mehdi
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8680 : 142 - 150
  • [7] Improving ultrasound-based prostate volume estimation
    Saro Aprikian
    Murilo Luz
    Fadi Brimo
    Eleonora Scarlata
    Lucie Hamel
    Fabio L. Cury
    Simon Tanguay
    Armen G. Aprikian
    Wassim Kassouf
    Simone Chevalier
    BMC Urology, 19
  • [8] Experience of ultrasound-based daily prostate localization
    Chandra, A
    Dong, L
    Huang, E
    Kuban, DA
    O'Neill, L
    Rosen, I
    Pollack, A
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 56 (02): : 436 - 447
  • [9] Improving ultrasound-based prostate volume estimation
    Aprikian, Saro
    Luz, Murilo
    Brimo, Fadi
    Scarlata, Eleonora
    Hamel, Lucie
    Cury, Fabio L.
    Tanguay, Simon
    Aprikian, Armen G.
    Kassouf, Wassim
    Chevalier, Simone
    BMC UROLOGY, 2019, 19 (1) : 68
  • [10] Three-dimensional ultrasound-based spectroscopic imaging for the detection of prostate cancer
    Chung, Hans T.
    Sofrani, Ervis
    Papanicolau, Naum
    Sugar, Linda
    Morton, Gerard
    Yaffe, Martin
    Nam, Robert
    Czarnota, Gregory J.
    JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (05)