Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh-Nagumo System

被引:38
|
作者
Carter, Paul [1 ]
de Rijk, Bjorn [2 ]
Sandstede, Bjorn [3 ]
机构
[1] Brown Univ, Dept Math, 151 Thayer St, Providence, RI 02912 USA
[2] Leiden Univ, Math Inst, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
[3] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
FitzHugh-Nagumo system; traveling pulses; spectral stability; geometric singular perturbation theory; Lin's method; SINGULAR PERTURBATION-THEORY; NERVE AXON EQUATIONS; WAVES; DICHOTOMIES; EXISTENCE; IMPULSE; POINTS;
D O I
10.1007/s00332-016-9308-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The FitzHugh-Nagumo equations are known to admit fast traveling pulses that have monotone tails and arise as the concatenation of Nagumo fronts and backs in an appropriate singular limit, where a parameter goes to zero. These pulses are known to be nonlinearly stable with respect to the underlying PDE. Recently, the existence of fast pulses with oscillatory tails was proved for the FitzHugh-Nagumo equations. In this paper, we prove that the fast pulses with oscillatory tails are also nonlinearly stable. Similar to the case of monotone tails, stability is decided by the location of a nontrivial eigenvalue near the origin of the PDE linearization about the traveling pulse. We prove that this real eigenvalue is always negative. However, the expression that governs the sign of this eigenvalue for oscillatory pulses differs from that for monotone pulses, and we show indeed that the nontrivial eigenvalue in the monotone case scales with , while the relevant scaling in the oscillatory case is epsilon(2/3).
引用
收藏
页码:1369 / 1444
页数:76
相关论文
共 50 条
  • [41] Stabilization of Solutions to a FitzHugh-Nagumo Type System
    Hilhorst, Danielle
    Rybka, Piotr
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) : 291 - 304
  • [42] Connections between saddles for the Fitzhugh-Nagumo system
    Rocsoreanu, C
    Giurgiteanu, N
    Georgescu, A
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02): : 533 - 540
  • [43] Stabilization of Solutions to a FitzHugh-Nagumo Type System
    Danielle Hilhorst
    Piotr Rybka
    [J]. Journal of Statistical Physics, 2010, 138 : 291 - 304
  • [44] Periodic Solutions of a Periodic FitzHugh-Nagumo System
    Llibre, Jaume
    Vidal, Claudio
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (13):
  • [45] Bifurcation and chaos in discrete FitzHugh-Nagumo system
    Jing, ZJ
    Chang, Y
    Guo, BL
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 21 (03) : 701 - 720
  • [46] MICROCONTROLLER BASED MODEL OF FITZHUGH-NAGUMO SYSTEM
    Petrovas, Andrius
    Lisauskas, Saulius
    Slepikas, Alvydas
    [J]. ELECTRICAL AND CONTROL TECHNOLOGIES, 2012, : 78 - +
  • [47] Unpeeling a Homoclinic Banana in the FitzHugh-Nagumo System
    Carter, Paul
    Sandstede, Bjorn
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 236 - 349
  • [48] Coherence resonance in a Fitzhugh-Nagumo electronic system
    Brugioni, Stefano
    Hwang, Dong U. K.
    Meucci, Riccardo
    Boccaletti, Stefano
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (10): : 3431 - 3436
  • [49] Traveling Pulse Solutions in a Three-Component FitzHugh-Nagumo Model
    Teramoto, Takashi
    van Heijster, Peter
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (01): : 371 - 402
  • [50] Intermingled traveling waves in a ring of nonlocally coupled FitzHugh-Nagumo oscillators
    Gao, Yuan
    Lei, Lixing
    Dai, Qionglin
    Yang, Junzhong
    [J]. EPL, 2019, 127 (01)