Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes

被引:48
|
作者
La Guardia, Giuliano G. [1 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Math & Stat, BR-84030900 Ponta Grossa, PR, Brazil
关键词
Quantum codes; Generalized Reed-Solomon codes; Finite fields; ERROR-CORRECTING CODES; FAMILIES;
D O I
10.1007/s11128-011-0269-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two new families of asymmetric quantum codes are constructed in this paper. The first one is derived from the Calderbank-Shor-Steane (CSS) construction applied to classical Reed-Solomon (RS) codes, providing quantum codes with parameters [[N = l(q(l) -1), K = l(q(l)-2d+c+1), d(z) >= d/d(x) >= (d-c)]](q), where q is a prime power and d > c + 1, c >= 1, l >= 1 are integers. The second family is derived from the CSS construction applied to classical generalized RS codes, generating quantum codes with parameters [[N = mn, K = m(2k-n+c), dz >= d/d(x) >= (d-c)]](q), where q is a prime power, 1 < k < n < 2k + c <= q(m), k = n - d + 1, and n, d > c + 1, c >= 1, m >= 1 are integers. Although the second proposed construction generalizes the first one, the techniques developed in both constructions are slightly different. These new codes have parameters better than or comparable to the ones available in the literature. Additionally, the proposed codes can be utilized in quantum channels having great asymmetry, that is, quantum channels in which the probability of occurrence of phase-shift errors is large when compared to the probability of occurrence of qudit-flip errors.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 50 条
  • [1] Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes
    Giuliano G. La Guardia
    Quantum Information Processing, 2012, 11 : 591 - 604
  • [2] Asymmetric quantum generalized Reed-Solomon codes
    La Guardia, Giuliano G.
    2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [3] Quantum Generalized Reed-solomon codes
    Li Zhuo
    Xing Li-Juan
    ACTA PHYSICA SINICA, 2008, 57 (01) : 28 - 30
  • [4] Quantum Generalized Reed-Solomon codes
    State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
    Wuli Xuebao, 2008, 1 (28-30):
  • [5] Quantum Reed-Solomon codes
    Grassl, M
    Geiselmann, W
    Beth, T
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 231 - 244
  • [6] On Reed-Solomon Codes
    Qunying LIAO1 1Institution of Mathematics and Software Science
    Chinese Annals of Mathematics(Series B), 2011, 32 (01) : 89 - 98
  • [7] On Reed-Solomon codes
    Qunying Liao
    Chinese Annals of Mathematics, Series B, 2011, 32 : 89 - 98
  • [8] On Reed-Solomon codes
    Liao, Qunying
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (01) : 89 - 98
  • [9] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 216 - 226
  • [10] Dimensions of the hull of generalized Reed-Solomon codes
    Huang, Jing
    Liu, Jingge
    Yu, Dong
    AIMS MATHEMATICS, 2024, 9 (06): : 13553 - 13569