Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes

被引:48
|
作者
La Guardia, Giuliano G. [1 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Math & Stat, BR-84030900 Ponta Grossa, PR, Brazil
关键词
Quantum codes; Generalized Reed-Solomon codes; Finite fields; ERROR-CORRECTING CODES; FAMILIES;
D O I
10.1007/s11128-011-0269-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two new families of asymmetric quantum codes are constructed in this paper. The first one is derived from the Calderbank-Shor-Steane (CSS) construction applied to classical Reed-Solomon (RS) codes, providing quantum codes with parameters [[N = l(q(l) -1), K = l(q(l)-2d+c+1), d(z) >= d/d(x) >= (d-c)]](q), where q is a prime power and d > c + 1, c >= 1, l >= 1 are integers. The second family is derived from the CSS construction applied to classical generalized RS codes, generating quantum codes with parameters [[N = mn, K = m(2k-n+c), dz >= d/d(x) >= (d-c)]](q), where q is a prime power, 1 < k < n < 2k + c <= q(m), k = n - d + 1, and n, d > c + 1, c >= 1, m >= 1 are integers. Although the second proposed construction generalizes the first one, the techniques developed in both constructions are slightly different. These new codes have parameters better than or comparable to the ones available in the literature. Additionally, the proposed codes can be utilized in quantum channels having great asymmetry, that is, quantum channels in which the probability of occurrence of phase-shift errors is large when compared to the probability of occurrence of qudit-flip errors.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 50 条
  • [31] Distinguishing and Recovering Generalized Linearized Reed-Solomon Codes
    Hoermann, Felicitas
    Bartz, Hannes
    Horlemann, Anna-Lena
    CODE-BASED CRYPTOGRAPHY, CBCRYPTO 2022, 2023, 13839 : 1 - 20
  • [32] On Twisted Generalized Reed-Solomon Codes With l Twists
    Gu, Haojie
    Zhang, Jun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (01) : 145 - 153
  • [33] MATRIX FORMALISM OF THE REED-SOLOMON CODES
    Marov, A., V
    Uteshev, A. Yu
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2016, 12 (04): : 4 - 17
  • [34] Proximity Gaps for Reed-Solomon Codes
    Ben-Sasson, Eli
    Carmon, Dan
    Ishai, Yuval
    Kopparty, Swastik
    Saraf, Shubhangi
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 900 - 909
  • [35] On error distance of Reed-Solomon codes
    YuJuan Li
    DaQing Wan
    Science in China Series A: Mathematics, 2008, 51 : 1982 - 1988
  • [36] Distance Distribution in Reed-Solomon Codes
    Li, Jiyou
    Wan, Daqing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 2743 - 2750
  • [37] ALGORITHMS AND ARCHITECTURES FOR REED-SOLOMON CODES
    ARAMBEPOLA, B
    CHOOMCHUAY, S
    GEC JOURNAL OF RESEARCH, 1992, 9 (03): : 172 - 184
  • [38] On the IPP Properties of Reed-Solomon Codes
    Fernandez, Marcel
    Cotrina, Josep
    Soriano, Miguel
    Domingo, Neus
    EMERGING CHALLENGES FOR SECURITY, PRIVACY AND TRUST: 24TH IFIP TC 11 INTERNATIONAL INFORMATION SECURITY CONFERENCE, SEC 2009, PROCEEDINGS, 2009, 297 : 87 - 97
  • [39] Lifted projective Reed-Solomon codes
    Lavauzelle, Julien
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (07) : 1541 - 1575
  • [40] A Topological View of Reed-Solomon Codes
    Besana, Alberto
    Martinez, Cristina
    MATHEMATICS, 2021, 9 (05)