Dimensions of the hull of generalized Reed-Solomon codes

被引:0
|
作者
Huang, Jing [1 ]
Liu, Jingge [2 ]
Yu, Dong [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
hull of a code; generalized Reed-Solomon code; algebraic geometry code;
D O I
10.3934/math.2024661
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let GRSk(alpha, v) be a k -dimensional generalized Reed -Solomon (GRS) code over Fq associated with alpha = (alpha 1, ... , alpha n) and v = (upsilon 1, ... , upsilon n). In this paper, we determined the dimension of the Euclidean hull GRSk(alpha, v) boolean AND GRSk(alpha, v)', which addresses an open problem posed in [Chen et al., IEEE -TIT, 2023]. We also presentd a new approach to generating all self -dual RS codes.
引用
收藏
页码:13553 / 13569
页数:17
相关论文
共 50 条
  • [1] Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes
    La Guardia, Giuliano G.
    [J]. QUANTUM INFORMATION PROCESSING, 2012, 11 (02) : 591 - 604
  • [2] Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes
    Giuliano G. La Guardia
    [J]. Quantum Information Processing, 2012, 11 : 591 - 604
  • [3] Quantum Generalized Reed-solomon codes
    Li Zhuo
    Xing Li-Juan
    [J]. ACTA PHYSICA SINICA, 2008, 57 (01) : 28 - 30
  • [4] Quantum Generalized Reed-Solomon codes
    State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
    [J]. Wuli Xuebao, 2008, 1 (28-30):
  • [5] A class of constacyclic codes are generalized Reed-Solomon codes
    Liu, Hongwei
    Liu, Shengwei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (12) : 4143 - 4151
  • [6] Asymmetric quantum generalized Reed-Solomon codes
    La Guardia, Giuliano G.
    [J]. 2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [7] A class of twisted generalized Reed-Solomon codes
    Zhang, Jun
    Zhou, Zhengchun
    Tang, Chunming
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (07) : 1649 - 1658
  • [8] On generalized Hyperbolic Cascaded Reed-Solomon codes
    Kurihara, M
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1999, 82 (11): : 18 - 27
  • [9] Automorphism groups of generalized Reed-Solomon codes
    Joyner, David
    Ksir, Amy
    Traves, Will
    [J]. ADVANCES IN CODING THEORY AND CRYPTOGRAPHY, 2007, 3 : 114 - 125
  • [10] On deep holes of generalized Reed-Solomon codes
    Hong, Shaofang
    Wu, Rongjun
    [J]. AIMS MATHEMATICS, 2016, 1 (02): : 96 - 101