Serialized quantum error correction protocol for high-bandwidth quantum repeaters

被引:22
|
作者
Glaudell, A. N. [1 ,2 ,3 ]
Waks, E. [1 ,2 ,4 ]
Taylor, J. M. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] NIST, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Elect & Comp Engn, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
基金
美国国家科学基金会;
关键词
quantum repeater; quantum error correction; quantum dots; teleportation; KEY DISTRIBUTION; STATE; ENTANGLEMENT; SECURITY; CRYPTOGRAPHY; COMPUTATION; PHOTON; COMMUNICATION; TELEPORTATION; THRESHOLD;
D O I
10.1088/1367-2630/18/9/093008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Advances in single-photon creation, transmission, and detection suggest that sending quantum information over optical fibers may have losses low enough to be correctable using a quantum error correcting code (QECC). Such error-corrected communication is equivalent to a novel quantum repeater scheme, but crucial questions regarding implementation and system requirements remain open. Here we show that long-range entangled bit generation with rates approaching 10(8) entangled bits per second may be possible using a completely serialized protocol, in which photons are generated, entangled, and error corrected via sequential, one-way interactions with as few matter qubits as possible. Provided loss and error rates of the required elements are below the threshold for quantum error correction, this scheme demonstrates improved performance over transmission of single photons. We find improvement in entangled bit rates at large distances using this serial protocol and various QECCs. In particular, at a total distance of 500 km with fiber loss rates of 0.3 dB km(-1), logical gate failure probabilities of 10(-5), photon creation and measurement error rates of 10(-5), and a gate speed of 80 ps, we find the maximum single repeater chain entangled bit rates of 51 Hz at a 20 m node spacing and 190 000 Hz at a 43 m node spacing for the [[3, 1, 2]](3) and [[7, 1, 3]] QECCs respectively as compared to a bare success rate of 1 x 10(-140) Hz for single photon transmission.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Experimental quantum error correction
    Cory, DG
    Price, MD
    Maas, W
    Knill, E
    Laflamme, R
    Zurek, WH
    Havel, TF
    Somaroo, SS
    PHYSICAL REVIEW LETTERS, 1998, 81 (10) : 2152 - 2155
  • [42] Methods of quantum error correction
    Grassl, M
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 740 - 743
  • [43] Approximate Quantum Error Correction
    Schumacher, Benjamin
    Westmoreland, Michael D.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 5 - 12
  • [44] Catalytic Quantum Error Correction
    Brun, Todd A.
    Devetak, Igor
    Hsieh, Min-Hsiu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) : 3073 - 3089
  • [45] On the Probabilistic Quantum Error Correction
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4620 - 4640
  • [46] Perturbative Quantum Error Correction
    Beny, Cedric
    PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [47] Quantum memories and error correction
    Wootton, James R.
    JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1717 - 1738
  • [48] Entanglement and quantum error correction
    Hiroshima, Tohya
    Hayashi, Masahito
    QUANTUM COMPUTATION AND INFORMATION: FROM THEORY TO EXPERIMENT, 2006, 102 : 111 - +
  • [49] Decoherence and quantum error correction
    Knight, PL
    Plenio, MB
    Vedral, V
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2381 - 2385
  • [50] Realization of quantum error correction
    J. Chiaverini
    D. Leibfried
    T. Schaetz
    M. D. Barrett
    R. B. Blakestad
    J. Britton
    W. M. Itano
    J. D. Jost
    E. Knill
    C. Langer
    R. Ozeri
    D. J. Wineland
    Nature, 2004, 432 : 602 - 605