A creep stress intensity factor approach to creep-fatigue crack growth

被引:61
|
作者
Shlyannikov, V. N. [1 ]
Tumanov, A. V. [1 ]
Boychenko, N. V. [1 ]
机构
[1] Russian Acad Sci, Kazan Sci Ctr, Moscow 117901, Russia
基金
俄罗斯科学基金会;
关键词
Creep-fatigue crack growth rate; Creep stress intensity factor; In-plane and out-of-plane constraint effects; OF-PLANE CONSTRAINT; TIP FIELDS; BEHAVIOR; PARAMETERS; MODEL;
D O I
10.1016/j.engfracmech.2015.05.056
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new parameter for characterization of the crack growth resistance for power plant materials and structures under elevated temperature is introduced in the form of creep stress intensity factor. On this base a crack growth rate approach is developed for the case of creep and fatigue interaction. A numerical method is proposed for estimating the governing parameter of the creep crack tip field in the form of an I-n-integral along the through-the-thickness straight and curved crack fronts. The application of the introduced parameters through experimental study of the creep-fatigue crack growth rate confirms effectiveness of the proposed approach. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:201 / 219
页数:19
相关论文
共 50 条
  • [41] A closure model for predicting crack growth under creep-fatigue loading
    Potirniche, Gabriel P.
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 125 : 58 - 71
  • [42] Crack growth in stainless steel 304 under creep-fatigue loading
    Baik, Y. M.
    Kim, K. S.
    PROGRESSES IN FRACTURE AND STRENGTH OF MATERIALS AND STRUCTURES, 1-4, 2007, 353-358 : 485 - +
  • [43] Early Crack Growth from Notches under Creep-Fatigue Loading
    Garnadt, Florian
    Kontermann, Christian
    Oechsner, Matthias
    23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 1113 - 1120
  • [44] Short Creep-Fatigue Crack Growth in an Advanced 9 %Cr Steel
    Yan, Wentao
    Holdsworth, Stuart
    Kuhn, Ingo
    Mazza, Edoardo
    MATERIALS PERFORMANCE AND CHARACTERIZATION, 2014, 3 (02) : 210 - 228
  • [45] Local approach: Numerical simulations of creep and creep-fatigue crack initiation and crack growth in 316L SPH austenitic stainless steel
    Poquillon, D
    Cabrillat, MT
    Pineau, A
    JOURNAL DE PHYSIQUE IV, 1996, 6 (C6): : 421 - 430
  • [46] Creep-fatigue crack growth in power-plant materials and components
    Saxena, A
    ADVANCES IN FRACTURE RESEARCH, VOLS 1-6, 1997, : 51 - 62
  • [47] Creep-fatigue crack growth behaviour of P91 steels
    Ab Razak, N.
    Davies, C. M.
    Nikbin, K. M.
    21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21), 2016, 2 : 855 - 862
  • [48] A creep-fatigue crack growth model containing temperature and interactive effects
    Liu, Hao
    Bao, Rui
    Zhang, Jianyu
    Fei, Binjun
    INTERNATIONAL JOURNAL OF FATIGUE, 2014, 59 : 34 - 42
  • [49] Models for Small Crack Growth under Creep-Fatigue in Austenitic Steels
    Skelton, R. P.
    CREEP-FATIGUE INTERACTIONS: TEST METHODS AND MODELS, 2011, 1539 : 142 - 177
  • [50] ASSESSMENT OF CREEP-FATIGUE CRACK-GROWTH IN THIN WELDED FEATURES
    JONES, MR
    NUCLEAR ENERGY-JOURNAL OF THE BRITISH NUCLEAR ENERGY SOCIETY, 1990, 29 (03): : 177 - 186