A creep stress intensity factor approach to creep-fatigue crack growth

被引:61
|
作者
Shlyannikov, V. N. [1 ]
Tumanov, A. V. [1 ]
Boychenko, N. V. [1 ]
机构
[1] Russian Acad Sci, Kazan Sci Ctr, Moscow 117901, Russia
基金
俄罗斯科学基金会;
关键词
Creep-fatigue crack growth rate; Creep stress intensity factor; In-plane and out-of-plane constraint effects; OF-PLANE CONSTRAINT; TIP FIELDS; BEHAVIOR; PARAMETERS; MODEL;
D O I
10.1016/j.engfracmech.2015.05.056
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new parameter for characterization of the crack growth resistance for power plant materials and structures under elevated temperature is introduced in the form of creep stress intensity factor. On this base a crack growth rate approach is developed for the case of creep and fatigue interaction. A numerical method is proposed for estimating the governing parameter of the creep crack tip field in the form of an I-n-integral along the through-the-thickness straight and curved crack fronts. The application of the introduced parameters through experimental study of the creep-fatigue crack growth rate confirms effectiveness of the proposed approach. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:201 / 219
页数:19
相关论文
共 50 条
  • [31] Creep-fatigue crack growth behavior of a structure with crack like defects at the welds
    Lee, Hyeong-Yeon
    Kim, Seok-Hoon
    Lee, Jae-Han
    Kim, Byung-Ho
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2006, 20 (12) : 2136 - 2146
  • [32] Creep-fatigue crack growth behavior of a structure with crack like defects at the welds
    Hyeong-Yeon Lee
    Seok-Hoon Kim
    Jae-Han Lee
    Byung-Ho Kim
    Journal of Mechanical Science and Technology, 2006, 20 : 2136 - 2146
  • [33] Creep Crack Growth in Aged Steam Turbine Casing Casting Steel Creep-Fatigue Interactions
    Singh, K.
    Bose, S. C.
    Chowdary, K. M.
    Radhakrishnan, V. M.
    Transactions of the Indian Institute of Metals, 1996, 49 (04):
  • [34] METHODS FOR DETERMINING CREEP DAMAGE AND CREEP-FATIGUE CRACK GROWTH INCUBATION IN AUSTENITIC STAINLESS STEEL
    Webster, George A.
    Dean, David W.
    Spindler, Michael W.
    Smith, N. Godfrey
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 6, PTS A AND B, 2010, : 671 - 683
  • [35] Transient creep-fatigue crack growth in creep-brittle materials: Application to Alloy 718
    Pribe, Joshua D.
    Ostergaard, Halsey E.
    Siegmund, Thomas
    Kruzic, Jamie J.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2022, 45 (10) : 2873 - 2889
  • [36] Crack growth behaviour of P92 steel under creep and creep-fatigue conditions
    Shi, K. X.
    Lin, F. S.
    Wan, H. B.
    Wang, Y. F.
    MATERIALS AT HIGH TEMPERATURES, 2014, 31 (04) : 343 - 347
  • [37] SYMPOSIUM ON CRACK-PROPAGATION UNDER CREEP AND CREEP-FATIGUE - FOREWORD
    SADANANDA, K
    MURTY, KL
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1988, 19 (04): : 820 - 820
  • [38] Loading history effect on creep-fatigue crack growth in pipe bend
    Shlyannikov, V. N.
    Tumanov, A. V.
    Boychenko, N. V.
    Tartygasheva, A. M.
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2016, 139 : 86 - 95
  • [39] Creep-fatigue crack growth behavior in GH4169 superalloy
    Dianyin Hu
    Xiyuan Wang
    Jianxing Mao
    Rongqiao Wang
    Frontiers of Mechanical Engineering, 2019, 14 : 369 - 376
  • [40] A concise and novel binomial model for creep-fatigue crack growth behaviors
    Zhang, Yongxiang
    Huang, Kun
    Liu, Hao
    Zou, Quanle
    Ren, Zhebo
    Liu, Zhanfang
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 135