Tackling realistic Li+ flux for high-energy lithium metal batteries

被引:86
|
作者
Zhang, Shuoqing [1 ]
Li, Ruhong [1 ]
Hu, Nan [2 ]
Deng, Tao [3 ]
Weng, Suting [4 ]
Wu, Zunchun [1 ]
Lu, Di [1 ]
Zhang, Haikuo [1 ]
Zhang, Junbo [1 ]
Wang, Xuefeng [4 ]
Chen, Lixin [1 ,5 ]
Fan, Liwu [2 ,6 ]
Fan, Xiulin [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Energy Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[3] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[4] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[5] Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310013, Peoples R China
[6] Key Lab Clean Energy & Carbon Neutral Zhejiang Pr, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLID-ELECTROLYTE INTERPHASE; FORCE-FIELD; ION; ANODES; DEPOSITION; EFFICIENCY; LIQUIDS;
D O I
10.1038/s41467-022-33151-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The low conductivity of LiF disturbs Li+ diffusion across solid electrolyte interphase (SEI) and induces Li+ transfer-driven dendritic growth. Herein, the authors establish a mechanistic model to decipher how the SEI affects realistic Li plating in high-fluorine electrolytes. Electrolyte engineering advances Li metal batteries (LMBs) with high Coulombic efficiency (CE) by constructing LiF-rich solid electrolyte interphase (SEI). However, the low conductivity of LiF disturbs Li+ diffusion across SEI, thus inducing Li+ transfer-driven dendritic deposition. In this work, we establish a mechanistic model to decipher how the SEI affects Li plating in high-fluorine electrolytes. The presented theory depicts a linear correlation between the capacity loss and current density to identify the slope k (determined by Li+ mobility of SEI components) as an indicator for describing the homogeneity of Li+ flux across SEI, while the intercept dictates the maximum CE that electrolytes can achieve. This model inspires the design of an efficient electrolyte that generates dual-halide SEI to homogenize Li+ distribution and Li deposition. The model-driven protocol offers a promising energetic analysis to evaluate the compatibility of electrolytes to Li anode, thus guiding the design of promising electrolytes for LMBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries
    Kim, Mun Sek
    Zhang, Zewen
    Rudnicki, Paul E.
    Yu, Zhiao
    Wang, Jingyang
    Wang, Hansen
    Oyakhire, Solomon T.
    Chen, Yuelang
    Kim, Sang Cheol
    Zhang, Wenbo
    Boyle, David T.
    Kong, Xian
    Xu, Rong
    Huang, Zhuojun
    Huang, William
    Bent, Stacey F.
    Wang, Lin-Wang
    Qin, Jian
    Bao, Zhenan
    Cui, Yi
    [J]. NATURE MATERIALS, 2022, 21 (04) : 445 - +
  • [22] A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries
    Ryu, Jaegeon
    Han, Dong-Yeob
    Hong, Dongki
    Park, Soojin
    [J]. ENERGY STORAGE MATERIALS, 2022, 45 : 941 - 951
  • [23] The application of hard carbon with internal quasi-lithium metal deposition in high-energy Li-ion/Li-metal hybrid batteries
    Wang, Shuhui
    Zhang, Zibo
    Guo, Qiang
    Li, Zhaonan
    Zhou, Xufeng
    Dong, Daojie
    Wang, Jin
    Yu, Yanan
    Xia, Shengjie
    Liu, Zhaoping
    [J]. ELECTROCHIMICA ACTA, 2023, 468
  • [24] Fluorinated Ether Based Electrolyte for High-Energy Lithium-Sulfur Batteries: Li+ Solvation Role Behind Reduced Polysulfide Solubility
    Talian, Sara Drvaric
    Jeschke, Steffen
    Vizintin, Alen
    Pirnat, Klemen
    Arcon, Iztok
    Aquilanti, Giuliana
    Johansson, Patrik
    Dominko, Robert
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (23) : 10037 - 10044
  • [25] Compositionally Sequenced Interfacial Layers for High-Energy Li-Metal Batteries
    Lee, Jeong-A
    Kim, Saehun
    Cho, Yoonhan
    Kweon, Seong Hyeon
    Kang, Haneul
    Byun, Jeong Hwan
    Kwon, Eunji
    Seo, Samuel
    Kim, Wonkeun
    Ryu, Kyoung Han
    Kwak, Sang Kyu
    Hong, Seungbum
    Choi, Nam-Soon
    [J]. ADVANCED SCIENCE, 2024, 11 (17)
  • [26] Anion-Diluent Pairing for Stable High-Energy Li Metal Batteries
    Zhu, Chunnan
    Sun, Chuangchao
    Li, Ruhong
    Weng, Suting
    Fan, Liwu
    Wang, Xuefeng
    Chen, Lixin
    Noked, Malachi
    Fan, Xiulin
    [J]. ACS ENERGY LETTERS, 2022, 7 (04) : 1338 - 1347
  • [27] Tortuosity Modulation toward High-Energy and High-Power Lithium Metal Batteries
    Shi, Yongzheng
    Li, Bin
    Zhang, Yongzheng
    Cui, Yanglansen
    Cao, Zhenjiang
    Du, Zhiguo
    Gu, Jianan
    Shen, Kai
    Yang, Shubin
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (12)
  • [28] Ga-polymer dual interfacial layer modified Li metal for high-energy Li metal batteries
    Xie, Shuyuan
    Yu, Shuang
    Hou, Yaolin
    Dong, Feilong
    Zhang, Xinming
    Zheng, Hongjun
    Xie, Haiming
    Wang, Ziping
    Liu, Yulong
    [J]. JOURNAL OF ENERGY STORAGE, 2024, 91
  • [29] Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications
    Chen, Shuru
    Dai, Fang
    Cai, Mei
    [J]. ACS ENERGY LETTERS, 2020, 5 (10): : 3140 - 3151
  • [30] Pathways for practical high-energy long-cycling lithium metal batteries
    Jun Liu
    Zhenan Bao
    Yi Cui
    Eric J. Dufek
    John B. Goodenough
    Peter Khalifah
    Qiuyan Li
    Bor Yann Liaw
    Ping Liu
    Arumugam Manthiram
    Y. Shirley Meng
    Venkat R. Subramanian
    Michael F. Toney
    Vilayanur V. Viswanathan
    M. Stanley Whittingham
    Jie Xiao
    Wu Xu
    Jihui Yang
    Xiao-Qing Yang
    Ji-Guang Zhang
    [J]. Nature Energy, 2019, 4 : 180 - 186