Tackling realistic Li+ flux for high-energy lithium metal batteries

被引:86
|
作者
Zhang, Shuoqing [1 ]
Li, Ruhong [1 ]
Hu, Nan [2 ]
Deng, Tao [3 ]
Weng, Suting [4 ]
Wu, Zunchun [1 ]
Lu, Di [1 ]
Zhang, Haikuo [1 ]
Zhang, Junbo [1 ]
Wang, Xuefeng [4 ]
Chen, Lixin [1 ,5 ]
Fan, Liwu [2 ,6 ]
Fan, Xiulin [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Energy Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[3] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[4] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[5] Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310013, Peoples R China
[6] Key Lab Clean Energy & Carbon Neutral Zhejiang Pr, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLID-ELECTROLYTE INTERPHASE; FORCE-FIELD; ION; ANODES; DEPOSITION; EFFICIENCY; LIQUIDS;
D O I
10.1038/s41467-022-33151-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The low conductivity of LiF disturbs Li+ diffusion across solid electrolyte interphase (SEI) and induces Li+ transfer-driven dendritic growth. Herein, the authors establish a mechanistic model to decipher how the SEI affects realistic Li plating in high-fluorine electrolytes. Electrolyte engineering advances Li metal batteries (LMBs) with high Coulombic efficiency (CE) by constructing LiF-rich solid electrolyte interphase (SEI). However, the low conductivity of LiF disturbs Li+ diffusion across SEI, thus inducing Li+ transfer-driven dendritic deposition. In this work, we establish a mechanistic model to decipher how the SEI affects Li plating in high-fluorine electrolytes. The presented theory depicts a linear correlation between the capacity loss and current density to identify the slope k (determined by Li+ mobility of SEI components) as an indicator for describing the homogeneity of Li+ flux across SEI, while the intercept dictates the maximum CE that electrolytes can achieve. This model inspires the design of an efficient electrolyte that generates dual-halide SEI to homogenize Li+ distribution and Li deposition. The model-driven protocol offers a promising energetic analysis to evaluate the compatibility of electrolytes to Li anode, thus guiding the design of promising electrolytes for LMBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Tackling realistic Li+ flux for high-energy lithium metal batteries
    Shuoqing Zhang
    Ruhong Li
    Nan Hu
    Tao Deng
    Suting Weng
    Zunchun Wu
    Di Lu
    Haikuo Zhang
    Junbo Zhang
    Xuefeng Wang
    Lixin Chen
    Liwu Fan
    Xiulin Fan
    [J]. Nature Communications, 13
  • [2] Reviving the lithium metal anode for high-energy batteries
    Lin, Dingchang
    Liu, Yayuan
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (03) : 194 - 206
  • [3] Reviving the lithium metal anode for high-energy batteries
    Lin D.
    Liu Y.
    Cui Y.
    [J]. Nature Nanotechnology, 2017, 12 (3) : 194 - 206
  • [4] Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
    Chaojiang Niu
    Huilin Pan
    Wu Xu
    Jie Xiao
    Ji-Guang Zhang
    Langli Luo
    Chongmin Wang
    Donghai Mei
    Jiashen Meng
    Xuanpeng Wang
    Ziang Liu
    Liqiang Mai
    Jun Liu
    [J]. Nature Nanotechnology, 2019, 14 : 594 - 601
  • [5] Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
    Niu, Chaojiang
    Pan, Huilin
    Xu, Wu
    Xiao, Jie
    Zhang, Ji-Guang
    Luo, Langli
    Wang, Chongmin
    Mei, Donghai
    Meng, Jiashen
    Wang, Xuanpeng
    Liu, Ziang
    Mai, Liqiang
    Liu, Jun
    [J]. NATURE NANOTECHNOLOGY, 2019, 14 (06) : 594 - +
  • [6] Challenges in high-energy Li-sulfur batteries: Failure mechanism on lithium metal anode
    Lv, Dongping
    Shao, Yuyan
    Li, Qiuyan
    Ferrara, Seth
    Bennett, Wendy
    Graff, Gordon
    Polzin, Bryant
    Zhang, Ji-Guang
    Henderson, Wesley A.
    Liu, Jun
    Xiao, Jie
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [7] LITHIUM HIGH-ENERGY BATTERIES
    MATHUR, PB
    AYYAR, RG
    [J]. JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 1976, 35 (08): : 512 - 518
  • [8] An Ultrathin Solid Electrolyte for High-Energy Lithium Metal Batteries
    Liu, Lufan
    Shi, Yongzheng
    Liu, Mengyue
    Zhong, Qing
    Chen, Yuqi
    Li, Bingyang
    Li, Zhen
    Zhang, Tao
    Su, Hang
    Peng, Jiaying
    Yang, Na
    Wang, Pengfei
    Fisher, Adrian
    Niu, Jin
    Wang, Feng
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [9] METAL-OXIDE CATHODES FOR LITHIUM HIGH-ENERGY BATTERIES
    KAHARA, T
    TAMURA, K
    HORIBA, T
    FUJITA, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (08) : C306 - C306
  • [10] An Antipulverization and High-Continuity Lithium Metal Anode for High-Energy Lithium Batteries
    Ye, Yusheng
    Zhao, Yuanyuan
    Zhao, Teng
    Xu, Sainan
    Xu, Zhixin
    Qian, Ji
    Wang, Lili
    Xing, Yi
    Wei, Lei
    Li, Yuejiao
    Wang, Jiulin
    Li, Li
    Wu, Feng
    Chen, Renjie
    [J]. ADVANCED MATERIALS, 2021, 33 (49)