An Antipulverization and High-Continuity Lithium Metal Anode for High-Energy Lithium Batteries

被引:45
|
作者
Ye, Yusheng [1 ]
Zhao, Yuanyuan [1 ]
Zhao, Teng [1 ]
Xu, Sainan [1 ]
Xu, Zhixin [2 ]
Qian, Ji [1 ]
Wang, Lili [1 ]
Xing, Yi [1 ]
Wei, Lei [1 ]
Li, Yuejiao [1 ]
Wang, Jiulin [2 ,3 ]
Li, Li [1 ,4 ]
Wu, Feng [1 ,4 ,5 ]
Chen, Renjie [1 ,4 ,5 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai Electrochem Energy Devices Res Ctr, Shanghai 200240, Peoples R China
[3] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Henan, Peoples R China
[4] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
[5] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250300, Peoples R China
基金
中国国家自然科学基金;
关键词
antipulverization; current collectors; lithium metal anodes; lithium-sulfur batteries; solid-state electrolytes; SOLID-ELECTROLYTE INTERPHASE; REDUCED GRAPHENE OXIDE; CONDUCTIVITY;
D O I
10.1002/adma.202105029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal is one of the most promising anode candidates for next-generation high-energy batteries. Nevertheless, lithium pulverization and associated loss of electrical contact remain significant challenges. Here, an antipulverization and high-continuity lithium metal anode comprising a small number of solid-state electrolyte (SSE) nanoparticles as conformal/sacrificial fillers and a copper (Cu) foil as the supporting current collector is reported. Guiding by the SSE, this new anode facilitates lithium nucleation, contributing to form a roundly shaped, micro-sized, and dendrite-free electrode during cycling, which effectively mitigates the lithium dendrite growth. The embedded Cu current collector in the hybrid anode not only reinforces the mechanical strength but also improves the efficient charge transfer among active lithium filaments, affording good electrode structural integrity and electrical continuity. As a result, this antipulverization and high-continuity lithium anode delivers a high average Coulombic efficiency of approximate to 99.6% for 300 cycles under a current density of 1 mA cm(-2). Lithium-sulfur batteries (elemental sulfur or sulfurized polyacrylonitrile cathodes) equipped with this anode show high-capacity retentions in their corresponding ether-based or carbonate-based electrolytes, respectively. This new electrode provides important insight into the design of electrodes that may experience large volume variation during operations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Reviving the lithium metal anode for high-energy batteries
    Lin, Dingchang
    Liu, Yayuan
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (03) : 194 - 206
  • [2] Reviving the lithium metal anode for high-energy batteries
    Lin D.
    Liu Y.
    Cui Y.
    [J]. Nature Nanotechnology, 2017, 12 (3) : 194 - 206
  • [3] Recent smart lithium anode configurations for high-energy lithium metal batteries
    Li, Yun-Nuo
    Wang, Cao-Yu
    Gao, Rui-Min
    Cao, Fei-Fei
    Ye, Huan
    [J]. ENERGY STORAGE MATERIALS, 2021, 38 : 262 - 275
  • [4] Chemically polished lithium metal anode for high energy lithium metal batteries
    Tang, Wei
    Yin, Xuesong
    Chen, Zhongxin
    Fu, Wei
    Loh, Kian Ping
    Zheng, Guangyuan Wesley
    [J]. ENERGY STORAGE MATERIALS, 2018, 14 : 289 - 296
  • [5] LITHIUM HIGH-ENERGY BATTERIES
    MATHUR, PB
    AYYAR, RG
    [J]. JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 1976, 35 (08): : 512 - 518
  • [6] Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives
    Han, Yiyao
    Liu, Bo
    Xiao, Zhen
    Zhang, Wenkui
    Wang, Xiuli
    Pan, Guoxiang
    Xia, Yang
    Xia, Xinhui
    Tu, Jiangping
    [J]. INFOMAT, 2021, 3 (02) : 155 - 174
  • [7] Nanocomposites of transition metal oxides with graphene as anode materials for high-energy lithium batteries
    Walkowiak, Mariusz
    Polrolniczak, Paulina
    Wasinsk, Krzysztof
    Przybylczak, Magdalena
    [J]. PRZEMYSL CHEMICZNY, 2017, 96 (06): : 1216 - 1220
  • [8] Design advanced lithium metal anode materials in high energy density lithium batteries
    Tian, Ran
    Jia, Jingyu
    Zhai, Meixiang
    Wei, Ying
    Feng, Xinru
    Li, Ruoqi
    Zhang, Jinyan
    Gao, Yun
    [J]. HELIYON, 2024, 10 (05)
  • [9] Electrolytes for high-energy lithium batteries
    Jennifer L. Schaefer
    Yingying Lu
    Surya S. Moganty
    Praveen Agarwal
    N. Jayaprakash
    Lynden A. Archer
    [J]. Applied Nanoscience, 2012, 2 : 91 - 109
  • [10] Electrolytes for high-energy lithium batteries
    Schaefer, Jennifer L.
    Lu, Yingying
    Moganty, Surya S.
    Agarwal, Praveen
    Jayaprakash, N.
    Archer, Lynden A.
    [J]. APPLIED NANOSCIENCE, 2012, 2 (02) : 91 - 109