Estimation of percentiles using the Kriging method for uncertainty propagation

被引:3
|
作者
Soepyana, Frits Byron [1 ]
Cremaschi, Selen [1 ,4 ]
Sarica, Cem [2 ]
Subramani, Hariprasad J. [3 ]
Kouba, Gene E. [3 ]
Gao, Haijing [3 ]
机构
[1] Univ Tulsa, Russell Sch Chem Engn, 800 South Tucker Dr, Tulsa, OK 74104 USA
[2] Univ Tulsa, McDougall Sch Petr Engn, 800 South Tucker Dr, Tulsa, OK 74104 USA
[3] Chevron Energy Technol Co, 1400 Smith St, Houston, TX 77002 USA
[4] Auburn Univ, Dept Chem Engn, 212 Ross Hall, Auburn, AL 36849 USA
关键词
Uncertainty propagation; Model output uncertainty; Kriging surrogate model; Solid particle transport; Threshold velocity; CRITICAL VELOCITY; CHOOSING HYPERPARAMETERS; PIPELINE FLOW; MODEL; VALIDATION; QUANTIFICATION; INTERPOLATION; SIMULATION; TRANSPORT; OUTPUT;
D O I
10.1016/j.compchemeng.2016.05.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of simulation-based uncertainty propagation approaches (e.g., Monte Carlo simulation method) can be computationally expensive if evaluating the function requires a relatively large computation time. To reduce the computation time, uncertainty propagation methods that use surrogate models (e.g., the Kriging method) may be used. In this paper, we extend the Kriging method to propagate the uncertainties from multiple sources, and for cases where the distribution of the prediction is produced at each trial (replication) of the simulation-based uncertainty propagation approach (i.e., at each sample point). The outputs of the methodology are the approximate percentiles of the output distribution. The capability of the methodology is tested using a Case Study involving the transport of solid particles in pipelines to prevent solid particle deposition and improve pipeline efficiency. Statistical comparisons suggest that our methodology successfully replicates the outputs from the Monte Carlo simulation method with a 94% reduction in computational cost. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 159
页数:17
相关论文
共 50 条
  • [41] An application of the Kriging method in global sensitivity analysis with parameter uncertainty
    Wang, Pan
    Lu, Zhenzhou
    Tang, Zhangchun
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (09) : 6543 - 6555
  • [42] Covariance Propagation for the Uncertainty Estimation in Stereo Vision
    Di Leo, Giuseppe
    Liguori, Consolatina
    Paolillo, Alfredo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (05) : 1664 - 1673
  • [43] Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction
    Fischer, Paul
    Thomas, K.
    Baumgartner, Christian F.
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023, 2023, 14291 : 84 - 94
  • [44] Uncertainty propagation in probabilistic seismic loss estimation
    Baker, Jack W.
    Cornell, C. Allin
    STRUCTURAL SAFETY, 2008, 30 (03) : 236 - 252
  • [45] EMC Uncertainty Simulation Method Based on Improved Kriging Model
    Bai, Jinjun
    Hu, Bing
    Xue, Zhengyu
    IEEE LETTERS ON ELECTROMAGNETIC COMPATIBILITY PRACTICE AND APPLICATIONS, 2023, 5 (04): : 127 - 130
  • [46] Comparative study on gradient and Hessian estimation using the Kriging method and neural network approximation
    Sakata, S.
    Ashida, F.
    Zako, M.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (3-4) : 309 - 319
  • [47] Strain estimation using ordinary Kriging interpolation
    Ghiasi, Y.
    Nafisi, V.
    SURVEY REVIEW, 2016, 48 (350) : 361 - 366
  • [48] The improvement of strain estimation using universal kriging
    Y. Ghiasi
    V. Nafisi
    Acta Geodaetica et Geophysica, 2015, 50 : 479 - 490
  • [49] The improvement of strain estimation using universal kriging
    Ghiasi, Y.
    Nafisi, V.
    ACTA GEODAETICA ET GEOPHYSICA, 2015, 50 (04) : 479 - 490
  • [50] Active Sampling Based Polynomial-Chaos-Kriging Model for Orbital Uncertainty Propagation
    Jia, Bin
    Xin, Ming
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2021, 44 (05) : 905 - 922