Estimation of percentiles using the Kriging method for uncertainty propagation

被引:3
|
作者
Soepyana, Frits Byron [1 ]
Cremaschi, Selen [1 ,4 ]
Sarica, Cem [2 ]
Subramani, Hariprasad J. [3 ]
Kouba, Gene E. [3 ]
Gao, Haijing [3 ]
机构
[1] Univ Tulsa, Russell Sch Chem Engn, 800 South Tucker Dr, Tulsa, OK 74104 USA
[2] Univ Tulsa, McDougall Sch Petr Engn, 800 South Tucker Dr, Tulsa, OK 74104 USA
[3] Chevron Energy Technol Co, 1400 Smith St, Houston, TX 77002 USA
[4] Auburn Univ, Dept Chem Engn, 212 Ross Hall, Auburn, AL 36849 USA
关键词
Uncertainty propagation; Model output uncertainty; Kriging surrogate model; Solid particle transport; Threshold velocity; CRITICAL VELOCITY; CHOOSING HYPERPARAMETERS; PIPELINE FLOW; MODEL; VALIDATION; QUANTIFICATION; INTERPOLATION; SIMULATION; TRANSPORT; OUTPUT;
D O I
10.1016/j.compchemeng.2016.05.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of simulation-based uncertainty propagation approaches (e.g., Monte Carlo simulation method) can be computationally expensive if evaluating the function requires a relatively large computation time. To reduce the computation time, uncertainty propagation methods that use surrogate models (e.g., the Kriging method) may be used. In this paper, we extend the Kriging method to propagate the uncertainties from multiple sources, and for cases where the distribution of the prediction is produced at each trial (replication) of the simulation-based uncertainty propagation approach (i.e., at each sample point). The outputs of the methodology are the approximate percentiles of the output distribution. The capability of the methodology is tested using a Case Study involving the transport of solid particles in pipelines to prevent solid particle deposition and improve pipeline efficiency. Statistical comparisons suggest that our methodology successfully replicates the outputs from the Monte Carlo simulation method with a 94% reduction in computational cost. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 159
页数:17
相关论文
共 50 条
  • [21] Evaluating subsurface uncertainty using zonal kriging
    Wingle, WL
    Poeter, EP
    UNCERTAINTY IN THE GEOLOGIC ENVIRONMENT: FROM THEORY TO PRACTICE, VOLS 1 AND 2: PROCEEDINGS OF UNCERTAINTY '96, 1996, (58): : 1318 - 1330
  • [22] Reliability Estimation Using Kriging Metamodel
    Cho, Tae-Min
    Ju, Byeong-Hyeon
    Jung, Do-Hyun
    Lee, Byung-Chai
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2006, 30 (08) : 941 - 948
  • [23] Efficient environmental uncertainty propagation using the probabilistic collocation method
    Liu, Zongwei
    Sun, Chao
    Du, Jinyan
    2012 OCEANS, 2012,
  • [24] Uncertainty Propagation for Compositional Flow Using a Probability Distribution Method
    Fuks, Olga
    Ibrahima, Fayadhoi
    Tomin, Pavel
    A. Tchelepi, Hamdi
    TRANSPORT IN POROUS MEDIA, 2020, 132 (01) : 113 - 133
  • [25] Uncertainty Propagation for Compositional Flow Using a Probability Distribution Method
    Olga Fuks
    Fayadhoi Ibrahima
    Pavel Tomin
    Hamdi A. Tchelepi
    Transport in Porous Media, 2020, 132 : 113 - 133
  • [26] An Intrusive Method for the Uncertainty Propagation
    Dossantos-Uzarralde, P.
    Nimal, V.
    Dejonghe, G.
    Sancandi, M.
    Andre, R.
    Hilaire, S.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 59 (02) : 1260 - 1263
  • [27] Estimation of Population Percentiles
    Schoonjans, Frank
    De Bacquer, Dirk
    Schmid, Pirmin
    EPIDEMIOLOGY, 2011, 22 (05) : 750 - 751
  • [28] Approximate global optimization with convexity estimation of response surface using Kriging method
    Sakata, Sei-ichiro
    Ashida, Fumihiro
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 40 (1-6) : 417 - 431
  • [29] Analyzing Kriging Method and Creating an Application Using Kriging
    Gaikwad, Nikhil
    Sawant, Rupali
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2016), 2016, : 171 - 176
  • [30] Metaheuristic kriging : A new spatial estimation method
    Atalay, Firat
    Ertunc, Gunes
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (03): : 483 - 492