Genetic algorithms for the elimination of redundancy and/or rule contribution assessment in fuzzy models

被引:0
|
作者
Zhao, J
Gorez, R
Wertz, V
机构
[1] Univ. Catholique de Louvain, Ctr. Syst. Eng. and Appl. Mechanics, Bât. Euler, B-1348 Louvain-La-Neuve, Av. Georges Lemaitre
关键词
D O I
10.1016/0378-4754(95)00066-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Takagi-Sugeno fuzzy models may contain redundant rules. The use of genetic algorithms for optimizing a performance index, which combines a modelling error and the number of rules in the model, allows the elimination of redundant rules and a subsequent adjustment of the weights of the rules retained in the model. The method is illustrated by examples.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 50 条
  • [41] Assessment of uncertainties in expert knowledge, illustrated in fuzzy rule-based models
    Janssen, J. A. E. B.
    Krol, M. S.
    Schielen, R. M. J.
    Hoekstra, A. Y.
    de Kok, J. -L.
    [J]. ECOLOGICAL MODELLING, 2010, 221 (09) : 1245 - 1251
  • [42] Evolutionary Fuzzy Control Using Rule-based Multi-Objective Genetic Algorithms
    Hsu, Chia-Hung
    Juang, Chia-Feng
    Jhan, Yue-Hua
    [J]. 2013 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY 2013), 2013, : 391 - 396
  • [43] Selection of Rules by Orthogonal Transformations and Genetic Algorithms to Improve the Interpretability in Fuzzy Rule Based Systems
    Isabel Rey, M.
    Galende, Marta
    Sainz, Gregorio I.
    Fuente, Maria J.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [44] Rule Base and Inference System Cooperative Learning of Mamdani Fuzzy Systems with Multiobjective Genetic Algorithms
    Marquez, Antonio A.
    Marquez, Francisco A.
    Peregrin, Antonio
    [J]. PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1045 - 1050
  • [45] Rule base and adaptive fuzzy operators cooperative learning of Mamdani fuzzy systems with multi-objective genetic algorithms
    Márquez A.A.
    Márquez F.A.
    Peregrín A.
    [J]. Evolutionary Intelligence, 2009, 2 (1-2) : 39 - 51
  • [46] Learning of rule importance for fuzzy controllers to deal with inconsistent rules and for rule elimination
    Pal, K
    Pal, NR
    [J]. CONTROL AND CYBERNETICS, 1998, 27 (04): : 521 - 543
  • [47] The fuzzy genetic algorithm based on rule
    Li, FC
    Su, LQ
    Ran, HC
    [J]. Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2454 - 2459
  • [48] Learning fuzzy linguistic models from low quality data by genetic algorithms
    Sanchez, Luciano
    Otero, Jose
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1926 - 1931
  • [49] Genetic algorithm based redundancy optimization in fuzzy framework
    Hou, FJ
    Wu, QZ
    [J]. Proceedings of the 4th International Conference on Quality & Reliability, 2005, : 799 - 803
  • [50] Predictive Models of Genetic Redundancy in Arabidopsis thaliana
    Cusack, Siobhan A.
    Wang, Peipei
    Lotreck, Serena G.
    Moore, Bethany M.
    Meng, Fanrui
    Conner, Jeffrey K.
    Krysan, Patrick J.
    Lehti-Shiu, Melissa D.
    Shiu, Shin-Han
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2021, 38 (08) : 3397 - 3414