Genetic algorithms for the elimination of redundancy and/or rule contribution assessment in fuzzy models

被引:0
|
作者
Zhao, J
Gorez, R
Wertz, V
机构
[1] Univ. Catholique de Louvain, Ctr. Syst. Eng. and Appl. Mechanics, Bât. Euler, B-1348 Louvain-La-Neuve, Av. Georges Lemaitre
关键词
D O I
10.1016/0378-4754(95)00066-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Takagi-Sugeno fuzzy models may contain redundant rules. The use of genetic algorithms for optimizing a performance index, which combines a modelling error and the number of rules in the model, allows the elimination of redundant rules and a subsequent adjustment of the weights of the rules retained in the model. The method is illustrated by examples.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 50 条
  • [31] Optimizing Fuzzy Rule Base for Illumination Compensation in Face Recognition using Genetic Algorithms
    Dewantara, Bima Sena Bayu
    Miura, Jun
    [J]. EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2014, 2 (02) : 62 - 79
  • [32] Feature Selection With Controlled Redundancy in a Fuzzy Rule Based Framework
    Chung, I-Fang
    Chen, Yi-Cheng
    Pal, Nikhil R.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (02) : 734 - 748
  • [33] A Redundancy Measure for Efficient Fuzzy Rule-Base Reduction
    Dutu, Liviu-Cristian
    Tissot, Jean-Marc
    Dabic, Stephanie
    Mauris, Gilles
    Bolon, Philippe
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA), 2017, : 147 - 152
  • [34] Coupling weight elimination and genetic algorithms
    Bebis, G
    Georgiopoulos, M
    Kasparis, T
    [J]. ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 1115 - 1120
  • [35] Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    Ishibuchi, H
    Yamamoto, T
    [J]. FUZZY SETS AND SYSTEMS, 2004, 141 (01) : 59 - 88
  • [36] Elimination of the Redundancy Related to Combining Algorithms to Improve the PDP Evaluation Performance
    Deng, Fan
    Zhang, Li-Yong
    Zhou, Bo-Yu
    Zhang, Jia-Wei
    Cao, Hong-Yang
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [37] FUZZY INTERPOLATIVE REASONING METHODS AND ALGORITHMS FOR THE SPARSE FUZZY RULE
    Wang, Tao
    Shi, Yan
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (04): : 1689 - 1697
  • [38] New terminate rule for genetic algorithms
    Li, Chun-Lian
    Wang, Xi-Cheng
    Zhao, Jin-Cheng
    [J]. Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban)/Journal of Liaoning Technical University (Natural Science Edition), 2004, 23 (01):
  • [39] Refining a rule base by genetic algorithms
    Terano, T
    Kobayashi, K
    [J]. CRITICAL TECHNOLOGY: PROCEEDINGS OF THE THIRD WORLD CONGRESS ON EXPERT SYSTEMS, VOLS I AND II, 1996, : 766 - 773
  • [40] Fuzzy Rule Extraction by Bacterial Memetic Algorithms
    Botzheim, J.
    Cabrita, C.
    Koczy, L. T.
    Ruano, A. E.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (03) : 312 - 339