Global geodesic acoustic mode in an ideal magnetohydrodynamic tokamak plasma

被引:5
|
作者
Ren, Haijun [1 ,2 ,3 ]
Wei, Lai [4 ,5 ]
Zhang, Debing [6 ]
Xu, X. Q. [3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Dalian Univ Technol, Key Lab Mat Modificat Laser Electron & Ion Beams, Minist Educ, Dalian 116024, Peoples R China
[5] Dalian Univ Technol, Sch Phys, Dalian 116024, Peoples R China
[6] East China Univ Sci & Technol, Dept Phys, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-FREQUENCY WAVES; ZONAL FLOWS; TURBULENCE;
D O I
10.1063/1.5139103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A concise and transparent second order ordinary differential equation (ODE) describing the radial structure of the global geodesic acoustic mode (GAM) is analytically presented in a low-beta tokamak plasma. The large-aspect-ratio and circular cross section are assumed to linearize the ideal magnetohydrodynamic equations. We show clearly how finite beta-dependent terms affect the global GAM frequency and radial mode structure. A typical Wentzel-Kramers-Brillouin form of solution is found for some reversed shear equilibria. For some other equilibria with lower beta, even also in a reversed shear tokamak, the GAM continuum is upraised by the high order beta-dependent terms so that its maximum is beyond omega(G), where omega(G) is the classical local frequency of GAM. As a result, no self-consistent solution to the ODE can be found. Published under license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Complete multi-field characterization of the geodesic acoustic mode in the TCV tokamak
    de Meijere, C. A.
    Coda, S.
    Huang, Z.
    Vermare, L.
    Vernay, T.
    Vuille, V.
    Brunner, S.
    Dominski, J.
    Hennequin, P.
    Kraemer-Flecken, A.
    Merlo, G.
    Porte, L.
    Villard, L.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (07)
  • [32] Energetic-particle-induced electromagnetic geodesic acoustic mode in tokamak plasmas
    Wang, Lingfeng
    Dong, J. Q.
    He, Zhixiong
    He, Hongda
    Shen, Y.
    PHYSICS OF PLASMAS, 2014, 21 (07)
  • [33] Geodesic-acoustic-mode in JFT-2M tokamak plasmas
    Ido, T.
    Miura, Y.
    Kamiya, K.
    Hamada, Y.
    Hoshino, K.
    Fujisawa, A.
    Itoh, K.
    Itoh, S. -I.
    Nishizawa, A.
    Ogawa, H.
    Kusama, Y.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (04) : S41 - S50
  • [34] Geodesic acoustic mode excitation by drift waves in tokamak plasmas with toroidal rotation
    Yu, Jun
    Gong, Xueyu
    NUCLEAR FUSION, 2013, 53 (12)
  • [35] Nonlinear mode couplings between geodesic acoustic mode and toroidal Alfven eigenmodes in the EAST tokamak
    Zhu, Xiang
    Zeng, Long
    Qiu, Zhiyong
    Lin, Shiyao
    Zhang, Tao
    Bao, Jian
    Hu, Youjun
    Tang, Tian
    Liu, Haiqing
    Kong, Defeng
    Wang, Yumin
    Shi, Tonghui
    Hao, Baolong
    Qian, Jinping
    Zang, Qing
    Lyu, Bo
    Wu, Muquan
    Li, Hang
    Jie, Yinxian
    Gao, Xiang
    Lin, Xiaodong
    PHYSICS OF PLASMAS, 2022, 29 (06)
  • [36] Linear properties of global energetic particle induced geodesic acoustic mode with bump-on-tail distribution in tokamak plasmas
    Xiang, Xijin
    Fu, Guoyong
    PHYSICS OF PLASMAS, 2019, 26 (03)
  • [37] Ideal conductive wall and magnetohydrodynamic instability in Tokamak
    Yong, Shen
    Jia-Qi, Dong
    Hong-Da, He
    Wei, Pan
    Guang-Zhou, Hao
    ACTA PHYSICA SINICA, 2023, 72 (03)
  • [38] Magnetohydrodynamic theory of the global structure and magnetic components of the geodesic acoustic continuum modes in tokamaks
    Wahlberg, C.
    Graves, J. P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (07)
  • [39] Magnetohydrodynamic instability excited by interplay between a resistive wall mode and stable ideal magnetohydrodynamic modes in rotating tokamak plasmas
    Aiba, N.
    Hirota, M.
    PHYSICS OF PLASMAS, 2015, 22 (08)
  • [40] Evolution of geodesic acoustic mode in ohmic H-mode in TUMAN-3M tokamak
    L. G. Askinazi
    M. I. Vildjunas
    N. A. Zhubr
    A. D. Komarov
    V. A. Kornev
    S. V. Krikunov
    L. I. Krupnik
    S. V. Lebedev
    V. V. Rozhdestvensky
    M. Tendler
    A. S. Tukachinsky
    S. M. Khrebtov
    Technical Physics Letters, 2012, 38 : 268 - 271