Global geodesic acoustic mode in an ideal magnetohydrodynamic tokamak plasma

被引:5
|
作者
Ren, Haijun [1 ,2 ,3 ]
Wei, Lai [4 ,5 ]
Zhang, Debing [6 ]
Xu, X. Q. [3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Dalian Univ Technol, Key Lab Mat Modificat Laser Electron & Ion Beams, Minist Educ, Dalian 116024, Peoples R China
[5] Dalian Univ Technol, Sch Phys, Dalian 116024, Peoples R China
[6] East China Univ Sci & Technol, Dept Phys, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-FREQUENCY WAVES; ZONAL FLOWS; TURBULENCE;
D O I
10.1063/1.5139103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A concise and transparent second order ordinary differential equation (ODE) describing the radial structure of the global geodesic acoustic mode (GAM) is analytically presented in a low-beta tokamak plasma. The large-aspect-ratio and circular cross section are assumed to linearize the ideal magnetohydrodynamic equations. We show clearly how finite beta-dependent terms affect the global GAM frequency and radial mode structure. A typical Wentzel-Kramers-Brillouin form of solution is found for some reversed shear equilibria. For some other equilibria with lower beta, even also in a reversed shear tokamak, the GAM continuum is upraised by the high order beta-dependent terms so that its maximum is beyond omega(G), where omega(G) is the classical local frequency of GAM. As a result, no self-consistent solution to the ODE can be found. Published under license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Impurity effect on geodesic acoustic mode in toroidally rotating tokamak plasmas
    Xie, Baoyi
    Guo, Wenfeng
    Xiang, Nong
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (02)
  • [22] Investigation of geodesic acoustic mode oscillations in the T-10 tokamak
    Melnikov, A. V.
    Vershkov, V. A.
    Eliseev, L. G.
    Grashin, S. A.
    Gudozhnik, A. V.
    Krupnik, L. I.
    Lysenko, S. E.
    Mavrin, V. A.
    Perfilov, S. V.
    Shelukhin, D. A.
    Soldatov, S. V.
    Ufimtsev, M. V.
    Urazbaev, A. O.
    Van Oost, G.
    Zimeleva, L. G.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (04) : S87 - S110
  • [23] Effects of electron dynamics on kinetic geodesic acoustic mode in tokamak plasmas
    Wang, Lingfeng
    Dong, J. Q.
    Shen, Y.
    He, H. D.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (09)
  • [24] Ideal magnetohydrodynamic stability of the tokamak high-confinement-mode edge region
    Wilson, H.R.
    Connor, J.W.
    Field, A.R.
    Fielding, S.J.
    Miller, R.L.
    Lao, L.L.
    Ferron, J.R.
    Turnbull, A.D.
    Physics of Plasmas, 6 (5 II):
  • [25] Ideal magnetohydrodynamic stability of the tokamak high-confinement-mode edge region
    Wilson, HR
    Connor, JW
    Field, AR
    Fielding, SJ
    Miller, RL
    Lao, LL
    Ferron, JR
    Turnbull, AD
    PHYSICS OF PLASMAS, 1999, 6 (05) : 1925 - 1934
  • [26] Zonal geodesic acoustic modes in a high-temperature plasma tokamak
    Mikhailovskii, A. B.
    Churikov, A. P.
    Pustovitov, V. D.
    DOKLADY PHYSICS, 2010, 55 (09) : 441 - 442
  • [27] The electromagnetic geodesic acoustic modes in a tokamak plasma with a poloidal electric field
    Zhou, Deng
    Wang, Jinfang
    Gan, Chenxiao
    PHYSICS OF PLASMAS, 2025, 32 (02)
  • [28] Plasma potential and geodesic acoustic mode evolution with Helium puffing in the ECRH regime on the T-10 tokamak
    Zenin, V. N.
    Subbotin, G. F.
    Klyuchnikov, L. A.
    Melnikov, A. V.
    II CONFERENCE ON PLASMA & LASER RESEARCH AND TECHNOLOGIES, 2016, 747
  • [29] Zonal geodesic acoustic modes in a high-temperature plasma tokamak
    A. B. Mikhailovskii
    A. P. Churikov
    V. D. Pustovitov
    Doklady Physics, 2010, 55 : 441 - 442
  • [30] Geodesic acoustic mode in anisotropic plasma with heat flux
    Ren, Haijun
    PHYSICS OF PLASMAS, 2015, 22 (10)