Global geodesic acoustic mode in an ideal magnetohydrodynamic tokamak plasma

被引:5
|
作者
Ren, Haijun [1 ,2 ,3 ]
Wei, Lai [4 ,5 ]
Zhang, Debing [6 ]
Xu, X. Q. [3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Dalian Univ Technol, Key Lab Mat Modificat Laser Electron & Ion Beams, Minist Educ, Dalian 116024, Peoples R China
[5] Dalian Univ Technol, Sch Phys, Dalian 116024, Peoples R China
[6] East China Univ Sci & Technol, Dept Phys, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-FREQUENCY WAVES; ZONAL FLOWS; TURBULENCE;
D O I
10.1063/1.5139103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A concise and transparent second order ordinary differential equation (ODE) describing the radial structure of the global geodesic acoustic mode (GAM) is analytically presented in a low-beta tokamak plasma. The large-aspect-ratio and circular cross section are assumed to linearize the ideal magnetohydrodynamic equations. We show clearly how finite beta-dependent terms affect the global GAM frequency and radial mode structure. A typical Wentzel-Kramers-Brillouin form of solution is found for some reversed shear equilibria. For some other equilibria with lower beta, even also in a reversed shear tokamak, the GAM continuum is upraised by the high order beta-dependent terms so that its maximum is beyond omega(G), where omega(G) is the classical local frequency of GAM. As a result, no self-consistent solution to the ODE can be found. Published under license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Numerical eigenanalysis of continuum geodesic acoustic mode by ideal magnetohydrodynamic model
    Guo, W.
    Ma, J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (03)
  • [2] Toroidal symmetry of the geodesic acoustic mode zonal flow in a tokamak plasma
    Zhao, K. J.
    Lan, T.
    Dong, J. Q.
    Yan, L. W.
    Hong, W. Y.
    Yu, C. X.
    Liu, A. D.
    Qian, J.
    Cheng, J.
    Yu, D. L.
    Yang, Q. W.
    Ding, X. T.
    Liu, Y.
    Pan, C. H.
    PHYSICAL REVIEW LETTERS, 2006, 96 (25)
  • [3] Spectral features of the geodesic acoustic mode and its interaction with turbulence in a tokamak plasma
    Lan, T.
    Liu, A. D.
    Yu, C. X.
    Yan, L. W.
    Hong, W. Y.
    Zhao, K. J.
    Dong, J. Q.
    Qian, J.
    Cheng, J.
    Yu, D. L.
    Yang, Q. W.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [4] Energetic particle driven geodesic acoustic mode in a toroidally rotating tokamak plasma
    Ren, Haijun
    NUCLEAR FUSION, 2017, 57 (01)
  • [5] The role of geodesic acoustic mode on reducing the turbulent transport in the edge plasma of tokamak
    Geng, K. N.
    Kong, D. F.
    Liu, A. D.
    Lan, T.
    Yu, C. X.
    Zhao, H. L.
    Yan, L. W.
    Cheng, J.
    Zhao, K. J.
    Dong, J. Q.
    Duan, X. R.
    Chen, R.
    Zhang, T.
    Zhang, S. B.
    Gao, X.
    Li, J.
    Xie, J. L.
    Li, H.
    Liu, W. D.
    PHYSICS OF PLASMAS, 2018, 25 (01)
  • [6] Global geodesic acoustic mode in a tokamak with positive magnetic shear and a monotonic temperature profile
    Ilgisonis, V. I.
    Khalzov, I. V.
    Lakhin, V. P.
    Smolyakov, A. I.
    Sorokina, E. A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (03)
  • [7] Electromagnetic characteristics of geodesic acoustic mode in the COMPASS tokamak
    Seidl, J.
    Krbec, J.
    Hron, M.
    Adamek, J.
    Hidalgo, C.
    Markovic, T.
    Melnikov, A. V.
    Stockel, J.
    Weinzettl, V.
    Aftanas, M.
    Bilkova, P.
    Bogar, O.
    Bohm, P.
    Eliseev, L. G.
    Hacek, P.
    Havlicek, J.
    Horacek, J.
    Imrisek, M.
    Kovarik, K.
    Mitosinkova, K.
    Panek, R.
    Tomes, M.
    Vondracek, P.
    NUCLEAR FUSION, 2017, 57 (12)
  • [8] Geodesic acoustic mode frequencies in experimental tokamak equilibria
    Hager, R.
    Hallatschek, K.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (03)
  • [9] Geodesic Acoustic Mode in Toroidal Plasma
    Chakrabarti, N.
    Guzdar, P. N.
    Kleva, R. G.
    Singh, R.
    Kaw, P. K.
    Naulin, V.
    Rasmussen, J. J.
    INTERNATIONAL SYMPOSIUM ON WAVES, COHERENT STRUCTURES, AND TURBULENCE IN PLASMAS, 2010, 1308 : 108 - +
  • [10] Finite-orbit-width effects on the geodesic acoustic mode in the toroidally rotating tokamak plasma
    Ren, H.
    PHYSICS OF PLASMAS, 2017, 24 (05)