Fast parallel direct solvers for coarse grid problems

被引:72
|
作者
Tufo, HM
Fischer, PF
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
direct solver; sparse factorization; nested dissection; parallel computing; coarse grid problems;
D O I
10.1006/jpdc.2000.1676
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We have developed a fast direct solver for parallel solution of coarse grid problems, Ax = b, such as arise when domain decomposition or multigrid methods are applied to elliptic partial differential equations in d space dimensions. The approach is based on a (quasi-) sparse factorization of the inverse of A. If A is n x n and the number of processors is P, the algorithm requires O(n(gamma)Y log P) time for communication and O(n(1+gamma)/P) time for computation, where gamma drop [GRAPHICS] The method is particularly suited to leading-edge multicomputer systems having thousands of processors. It achieves minimal message startup costs and substantially reduced message volume and arithmetic complexity compared with competing methods, which require O(n log P) time for communication and O(n(1+gamma)) or O(n(2)/P) lime for computation. Timings on the Intel Paragon and ASCI-Red machines reflect these complexity estimates. (C) 2001 Academic Press.
引用
收藏
页码:151 / 177
页数:27
相关论文
共 50 条
  • [31] Solving low frequency electromagnetic problems with fast solvers
    Chew, WC
    Jiang, LJ
    Chu, YH
    Liu, YA
    Li, MK
    Qian, ZG
    Xiong, J
    Sun, L
    EMC 2005: IEEE International Symposium on Electromagnetic Compatibility, Vols 1-3, Proceedings, 2005, : 811 - 816
  • [32] Linear solvers for power grid optimization problems: A review of GPU-accelerated linear solvers
    Swirydowicz, Kasia
    Darve, Eric
    Jones, Wesley
    Maack, Jonathan
    Regev, Shaked
    Saunders, Michael A.
    Thomas, Stephen J.
    Peles, Slaven
    PARALLEL COMPUTING, 2022, 111
  • [33] Reconfigurable Hardware Generation of Multigrid Solvers with Conjugate Gradient Coarse-Grid Solution
    Schmitt, Christian
    Schmid, Moritz
    Kuckuk, Sebastian
    Koestler, Harald
    Teich, Juergen
    Hannig, Frank
    PARALLEL PROCESSING LETTERS, 2018, 28 (04)
  • [34] Direct and iterative solvers for finite-element problems
    J.P. Gregoire
    C. Rose
    B. Thomas
    Numerical Algorithms, 1997, 16 : 39 - 53
  • [35] ITERATIVE AND DIRECT SOLVERS FOR INTERFACE PROBLEMS WITH LAGRANGE MULTIPLIERS
    FISH, J
    BELSKY, V
    PANDHEERADI, M
    COMPUTING SYSTEMS IN ENGINEERING, 1995, 6 (03): : 261 - 273
  • [36] Direct and iterative solvers for finite-element problems
    Gregoire, JP
    Rose, C
    Thomas, B
    NUMERICAL ALGORITHMS, 1997, 16 (01) : 39 - 53
  • [37] Optimal and Efficient Parallel Tridiagonal Solvers Using Direct Methods
    Eunice E. Santos
    The Journal of Supercomputing, 2004, 30 : 97 - 115
  • [38] Parallel performance comparison of three direct separable elliptic solvers
    Bencheva, G
    LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 421 - 428
  • [39] Optimal and efficient parallel tridiagonal solvers using direct methods
    Santos, EE
    JOURNAL OF SUPERCOMPUTING, 2004, 30 (02): : 97 - 115
  • [40] Parallel Domain Decomposition Solvers for Contact Shape Optimization Problems
    Vondrak, V.
    Kozubek, T.
    Dostal, Z.
    Kabelikova, P.
    Horak, D.
    Markopoulos, A.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94