Fast parallel direct solvers for coarse grid problems

被引:72
|
作者
Tufo, HM
Fischer, PF
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
direct solver; sparse factorization; nested dissection; parallel computing; coarse grid problems;
D O I
10.1006/jpdc.2000.1676
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We have developed a fast direct solver for parallel solution of coarse grid problems, Ax = b, such as arise when domain decomposition or multigrid methods are applied to elliptic partial differential equations in d space dimensions. The approach is based on a (quasi-) sparse factorization of the inverse of A. If A is n x n and the number of processors is P, the algorithm requires O(n(gamma)Y log P) time for communication and O(n(1+gamma)/P) time for computation, where gamma drop [GRAPHICS] The method is particularly suited to leading-edge multicomputer systems having thousands of processors. It achieves minimal message startup costs and substantially reduced message volume and arithmetic complexity compared with competing methods, which require O(n log P) time for communication and O(n(1+gamma)) or O(n(2)/P) lime for computation. Timings on the Intel Paragon and ASCI-Red machines reflect these complexity estimates. (C) 2001 Academic Press.
引用
收藏
页码:151 / 177
页数:27
相关论文
共 50 条
  • [21] Parallel explicit unstructured grid solvers on distributed memory computers
    Cabello, J
    ADVANCES IN ENGINEERING SOFTWARE, 1996, 26 (03) : 189 - 200
  • [22] Development of direct multifrontal solvers for combustion problems
    Raju, Mandhapati P.
    T'ien, James S.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2008, 53 (03) : 189 - 205
  • [23] Use of Direct Solvers in TFETI Massively Parallel Implementation
    Hapla, Vaclav
    Horak, David
    Merta, Michal
    APPLIED PARALLEL AND SCIENTIFIC COMPUTING (PARA 2012), 2013, 7782 : 192 - 205
  • [24] New Parallel Sparse Direct Solvers for Multicore Architectures
    Hogg, Jonathan
    Scott, Jennifer
    ALGORITHMS, 2013, 6 (04) : 702 - 725
  • [25] TOWARD PARALLEL COARSE GRID CORRECTION FOR THE PARAREAL ALGORITHM
    Wu, Shu-Lin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : A1446 - A1472
  • [26] A parallel block preconditioner accelerated by coarse grid correction
    Vuik, C
    Frank, J
    HIGH PERFORMANCE COMPUTING AND NETWORKING, PROCEEDINGS, 2000, 1823 : 99 - 108
  • [27] FAST NUMERICAL SOLVERS FOR SUBDIFFUSION PROBLEMS WITH SPATIAL INTERFACES
    Yu, Boyang
    Li, Yonghai
    Liu, Jiangguo
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (03) : 431 - 458
  • [28] Fast Solvers for Nonsmooth Optimization Problems in Phase Separation
    Kumar, Pawan
    PROCEEDINGS OF THE 2015 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2015, 5 : 589 - 594
  • [29] Fast iterative solvers for buoyancy driven flow problems
    Elman, Howard
    Mihajlovic, Milan
    Silvester, David
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3900 - 3914
  • [30] Fast isogeometric solvers for hyperbolic wave propagation problems
    Los, M.
    Behnoudfar, P.
    Paszynski, M.
    Calo, V. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (01) : 109 - 120