Unsupervised Classification of SAR Images Using Markov Random Fields and GI0 Model

被引:18
|
作者
Picco, Mery [1 ]
Palacio, Gabriela [1 ]
机构
[1] Univ Nacl Rio Cuarto, RA-5800 Rio Cuarto, Argentina
关键词
Classification; Markovian segmentation; statistical model; synthetic aperture radar (SAR); DISTRIBUTIONS; ESTIMATORS;
D O I
10.1109/LGRS.2010.2073678
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter deals with synthetic aperture radar (SAR) data classification in an unsupervised way. Many models have been proposed to fit SAR data (K, Weibull, Log-normal, etc.), but none of them are flexible enough to model all kinds of surfaces (particularly when there are urban areas present in the image). Our main contribution is the application of a statistical model G(0) in a classification process which is shown to be able to model areas with different degrees of heterogeneity. The quality of the classification obtained by mixing this model and a Markovian segmentation is high. We use an iterative conditional estimation method to estimate the parameters of the proposed model.
引用
收藏
页码:350 / 353
页数:4
相关论文
共 50 条
  • [21] AN UNSUPERVISED HIDDEN MARKOV RANDOM FIELD BASED SEGMENTATION OF POLARIMETRIC SAR IMAGES
    Banerjee, Biplab
    De, Shaunak
    Manickam, Surendar
    Bhattacharya, Avik
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1536 - 1539
  • [22] Shannon Entropy for the GI0 Model: A New Segmentation Approach
    Ferreira, Jodavid de A.
    Nascimento, Abraao D. C.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 2547 - 2553
  • [23] Unsupervised PolSAR Image Classification and Segmentation Using Dirichlet Process Mixture Model and Markov Random Fields With Similarity Measure
    Song, Wanying
    Li, Ming
    Zhang, Peng
    Wu, Yan
    Jia, Lu
    An, Lin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) : 3556 - 3568
  • [24] Optimized classification approach for SAR images using hidden Markov chains model
    Yuan, L. H.
    Song, J. S.
    Xue, W. T.
    Zheng, Y. A.
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 1899 - 1903
  • [25] Wavelet-based despeckling of SAR images using Gauss-Markov random fields
    Gleich, Dusan
    Datcu, Mihai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12): : 4127 - 4143
  • [26] Multiscale Unsupervised Change Detection on Optical Images by Markov Random Fields and Wavelets
    Moser, Gabriele
    Angiati, Elena
    Serpico, Sebastiano B.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 725 - 729
  • [27] Unsupervised Polarimetric SAR Image Classification Using Gp0 Mixture Model
    Ignacio Fernandez-Michelli, Juan
    Hurtado, Martin
    Areta, Javier A.
    Muravchik, Carlos H.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 754 - 758
  • [28] Segmentation of SAR images based on Markov random field model
    Lankoande, O
    Hayat, MM
    Santhanam, B
    [J]. INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 2956 - 2961
  • [29] Unsupervised classification of polarimetric SAR images using neural networks
    Yahia, M
    Belhadj, Z
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 203 - 205
  • [30] Decomposition of range images using markov random fields
    Pichler, A
    Fisher, RB
    Vincze, M
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1205 - 1208