Wavelet-based despeckling of SAR images using Gauss-Markov random fields

被引:52
|
作者
Gleich, Dusan [1 ]
Datcu, Mihai
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, Lab Signal Proc & Remote Control, SLO-2000 Maribor, Slovenia
[2] German Aerosp Ctr, Remote Sensing Technol Inst, D-82234 Wessling, Germany
[3] Polytech Univ, Inst Technol, GET Telecom Paris, Bucharest, Romania
来源
关键词
Bayesian inference; denoising; Gauss-Markov random fields (GMRFs); speckle noise; synthetic aperture radar (SAR); wavelet transform;
D O I
10.1109/TGRS.2007.906093
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, a wavelet-based speckle-removing algorithm is represented and tested on synthetic aperture radar (SAR) images. The SAR image is first transformed using a dyadic wavelet transform. The noise in the wavelet-transformed image is modeled as an additive signal-dependent noise with Gaussian distribution. The distribution of a noise-free image in a wavelet domain is modeled as a generalized Gauss-Markov random field (GGMRF). An unsupervised stochastic model-based approach to image denoising is represented. If the observed area is homogeneous, the parameters of the Gaussian distribution and GGMRFs are estimated from incomplete data using mixtures of wavelet coefficients. An expectation-maximization algorithm is used to estimate the parameters of both noisy and noise-free images. The unknown parameters are estimated using image and noise models that are defined in the wavelet domain for heterogeneous areas. Different inter- and intrascale dependences of wavelet coefficients were used to estimate the unknown parameters, The represented wavelet-based method efficiently removes noise from SAR images.
引用
收藏
页码:4127 / 4143
页数:17
相关论文
共 50 条
  • [1] Gauss-Markov model for wavelet-based SAR image despeckling
    Gleich, Dusan
    Datcu, Mihai
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (06) : 365 - 368
  • [2] Wavelet-based SAR images despeckling using Joint Hidden Markov Model
    Li, Qiaoliang
    Wang, Guoyou
    Liu, Jianguo
    Chen, Shaobo
    [J]. MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING, 2007, 6787
  • [3] Wavelet-based despeckling SAR images using neighbouring wavelet coefficients
    Chen, GZ
    Liu, XZ
    [J]. IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 1764 - 1766
  • [4] Homomorphic wavelet-based statistical despeckling of SAR images
    Solbo, S
    Eltoft, T
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (04): : 711 - 721
  • [5] HOMOGENEOUS GAUSS-MARKOV RANDOM FIELDS
    WONG, E
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1625 - &
  • [6] Non-destructive wavelet-based despeckling in SAR images
    Bekhtin, Yury S.
    Bryantsev, Andrey A.
    Malebo, Damiao P.
    Lupachev, Alexey A.
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XIV, 2014, 9243
  • [7] Wavelet-based spatially adaptive method for despeckling SAR images
    Bhuiyan, M. I. H.
    Ahmad, M. Omair
    Swamy, M. N. S.
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 1719 - +
  • [8] A comment on "Homomorphic wavelet-based statistical despeckling of SAR images"
    Nadarajah, Saralees
    Kotz, Samuel
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (04) : 570 - 571
  • [9] Bayesian restoration of high resolution SAR imagery with Gauss-Markov random fields
    Chen, X
    Zhang, H
    Wang, C
    Wu, T
    [J]. IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 4648 - 4650
  • [10] Quickest Detection of Gauss-Markov Random Fields
    Heydari, Javad
    Tajer, Ali
    Poor, H. Vincent
    [J]. 2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 808 - 814