Wavelet-based despeckling of SAR images using Gauss-Markov random fields

被引:52
|
作者
Gleich, Dusan [1 ]
Datcu, Mihai
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, Lab Signal Proc & Remote Control, SLO-2000 Maribor, Slovenia
[2] German Aerosp Ctr, Remote Sensing Technol Inst, D-82234 Wessling, Germany
[3] Polytech Univ, Inst Technol, GET Telecom Paris, Bucharest, Romania
来源
关键词
Bayesian inference; denoising; Gauss-Markov random fields (GMRFs); speckle noise; synthetic aperture radar (SAR); wavelet transform;
D O I
10.1109/TGRS.2007.906093
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, a wavelet-based speckle-removing algorithm is represented and tested on synthetic aperture radar (SAR) images. The SAR image is first transformed using a dyadic wavelet transform. The noise in the wavelet-transformed image is modeled as an additive signal-dependent noise with Gaussian distribution. The distribution of a noise-free image in a wavelet domain is modeled as a generalized Gauss-Markov random field (GGMRF). An unsupervised stochastic model-based approach to image denoising is represented. If the observed area is homogeneous, the parameters of the Gaussian distribution and GGMRFs are estimated from incomplete data using mixtures of wavelet coefficients. An expectation-maximization algorithm is used to estimate the parameters of both noisy and noise-free images. The unknown parameters are estimated using image and noise models that are defined in the wavelet domain for heterogeneous areas. Different inter- and intrascale dependences of wavelet coefficients were used to estimate the unknown parameters, The represented wavelet-based method efficiently removes noise from SAR images.
引用
收藏
页码:4127 / 4143
页数:17
相关论文
共 50 条
  • [21] Wavelet-Based SAR Image Despeckling Using Cauchy pdf Modeling
    Chen, Guozhong
    Liu, Xingzhao
    [J]. 2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 129 - 133
  • [22] PROBABILISTIC IMAGE PROCESSING BY EXTENDED GAUSS-MARKOV RANDOM FIELDS
    Tanaka, Kazuyuki
    Morin, Nicolas
    Yasuda, Muneki
    Titterington, D. M.
    [J]. 2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 617 - +
  • [23] Telescoping Recursive Representations and Estimation of Gauss-Markov Random Fields
    Vats, Divyanshu
    Moura, Jose M. F.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (03) : 1645 - 1663
  • [24] A nested recursive approach to MAP estimation based on Gauss-Markov random fields
    Kaufhold, J
    Karl, WC
    Castanon, DA
    [J]. 1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 2, 1998, : 98 - 102
  • [25] COMPOUND GAUSS-MARKOV RANDOM-FIELDS FOR IMAGE ESTIMATION
    JENG, FC
    WOODS, JW
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (03) : 683 - 697
  • [26] Wavelet-based markov models for clutter characterization in IR and SAR images
    Stanford, D
    Pitton, J
    Goldschneider, J
    [J]. WAVELET APPLICATIONS VII, 2000, 4056 : 406 - 420
  • [27] Wavelet-Based SAR Image Despeckling and Information Extraction, Using Particle Filter
    Gleich, Dusan
    Datcu, Mihai
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (10) : 2167 - 2184
  • [28] Transmission tomography reconstruction using compound Gauss-Markov random fields and ordered subsets
    Lopez, A.
    Martin, J. M.
    Molina, R.
    Katsaggelos, A. K.
    [J]. IMAGE ANALYSIS AND RECOGNITION, PT 2, 2006, 4142 : 559 - 569
  • [29] COMPRESSED SENSING OF GAUSS-MARKOV RANDOM FIELDS WITH WIRELESS SENSOR NETWORKS
    Oka, Anand
    Lampe, Lutz
    [J]. 2008 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2008, : 257 - 260
  • [30] THE GAUSS-MARKOV THEOREM AND RANDOM REGRESSORS
    SHAFFER, JP
    [J]. AMERICAN STATISTICIAN, 1991, 45 (04): : 269 - 273