Wavelet-based markov models for clutter characterization in IR and SAR images

被引:0
|
作者
Stanford, D [1 ]
Pitton, J [1 ]
Goldschneider, J [1 ]
机构
[1] MathSoft, Seattle, WA USA
来源
WAVELET APPLICATIONS VII | 2000年 / 4056卷
关键词
IR; SAR; clutter; automatic target recognition; target detection; CFAR; classification; wavelets; Markov random field; nonparametric estimation;
D O I
10.1117/12.381701
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents wavelet-based methods for characterizing clutter in infrared (IR) and synthetic aperture radar (SAR) images. With our methods, the operating parameters of automatic target recognition (ATR) systems can automatically adapt to local clutter conditions. Structured clutter, which can confuse ATR systems, possesses correlation across scale in the wavelet domain. We model this correlation using wavelet-domain hidden Markov trees, for which efficient parameter estimation algorithms exist. Based on these models, we develop analytical methods for estimating the false alarm rates of mean-squared-error classifiers. These methods are equally useful for determining threshold levels for constant false alarm rate (CFAR) detectors.
引用
收藏
页码:406 / 420
页数:15
相关论文
共 50 条
  • [1] Wavelet-based SAR images despeckling using Joint Hidden Markov Model
    Li, Qiaoliang
    Wang, Guoyou
    Liu, Jianguo
    Chen, Shaobo
    [J]. MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING, 2007, 6787
  • [2] Wavelet-based despeckling of SAR images using Gauss-Markov random fields
    Gleich, Dusan
    Datcu, Mihai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12): : 4127 - 4143
  • [3] Wavelet-based unsupervised SAR image segmentation using hidden Markov tree models*
    Ye, Z
    Lu, CC
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 729 - 732
  • [4] Homomorphic wavelet-based statistical despeckling of SAR images
    Solbo, S
    Eltoft, T
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (04): : 711 - 721
  • [5] Wavelet-based despeckling SAR images using neighbouring wavelet coefficients
    Chen, GZ
    Liu, XZ
    [J]. IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 1764 - 1766
  • [6] Wavelet-based denoising using hidden Markov models
    Borran, MJ
    Nowak, RD
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 3925 - 3928
  • [7] Hidden Markov models for wavelet-based signal processing
    Crouse, MS
    Baraniuk, RG
    Nowak, RD
    [J]. THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 1029 - 1035
  • [8] Suppression of speckle in SAR images using wavelet-based HMM
    Zhang, Zhi-Ming
    Wang, Yue
    Tao, Ran
    Zhou, Si-Yong
    [J]. Journal of Beijing Institute of Technology (English Edition), 2001, 10 (01): : 86 - 92
  • [9] A comment on "Homomorphic wavelet-based statistical despeckling of SAR images"
    Nadarajah, Saralees
    Kotz, Samuel
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (04) : 570 - 571
  • [10] Non-destructive wavelet-based despeckling in SAR images
    Bekhtin, Yury S.
    Bryantsev, Andrey A.
    Malebo, Damiao P.
    Lupachev, Alexey A.
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XIV, 2014, 9243