Reductions of minimal Lagrangian submanifolds with symmetries

被引:1
|
作者
Kajigaya, Toru [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, MathAM OIL, Sendai, Miyagi 9808577, Japan
基金
日本学术振兴会;
关键词
Minimal Lagrangian submanifolds; Kahler reductions; MEAN-CURVATURE FLOW; REAL HYPERSURFACES; MANIFOLDS;
D O I
10.1007/s00209-017-1992-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a Fano manifold equipped with a Kahler form and K a connected compact Lie group acting on M as holomorphic isometries. In this paper, we show the minimality of a K-invariant Lagrangian submanifold L in M with respect to a globally conformal Kahler metric is equivalent to the minimality of the reduced Lagrangian submanifold in a Kahler quotient with respect to the Hsiang-Lawson metric. Furthermore, we give some examples of Kahler reductions by using a circle action obtained from a cohomogenenity one action on a Kahler-Einstein manifold of positive Ricci curvature. Applying these results, we obtain several examples of minimal Lagrangian submanifolds via reductions.
引用
收藏
页码:1169 / 1189
页数:21
相关论文
共 50 条
  • [1] Reductions of minimal Lagrangian submanifolds with symmetries
    Toru Kajigaya
    [J]. Mathematische Zeitschrift, 2018, 289 : 1169 - 1189
  • [2] Hamiltonian-minimal Lagrangian submanifolds in Kaehler manifolds with symmetries
    Dong, Yuxin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (03) : 865 - 882
  • [3] Deformations of minimal Lagrangian submanifolds with boundary
    Butscher, A
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (06) : 1953 - 1964
  • [4] Minimal Lagrangian submanifolds of the complex hyperquadric
    Haizhong Li
    Hui Ma
    Joeri Van der Veken
    Luc Vrancken
    Xianfeng Wang
    [J]. Science China Mathematics, 2020, 63 : 1441 - 1462
  • [5] Minimal Lagrangian submanifolds of the complex hyperquadric
    Li, Haizhong
    Ma, Hui
    Van der Veken, Joeri
    Vrancken, Luc
    Wang, Xianfeng
    [J]. SCIENCE CHINA-MATHEMATICS, 2020, 63 (08) : 1441 - 1462
  • [6] Minimal Lagrangian submanifolds of the complex hyperquadric
    Haizhong Li
    Hui Ma
    Joeri Van der Veken
    Luc Vrancken
    Xianfeng Wang
    [J]. Science China Mathematics, 2020, 63 (08) : 1441 - 1462
  • [7] A Construction of Special Lagrangian Submanifolds by Generalized Perpendicular Symmetries
    Ochiai, Akifumi
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2020, 43 (01) : 215 - 238
  • [8] Minimal Lagrangian submanifolds in ℂPn with diagonal metric
    I. P. Rybnikov
    [J]. Siberian Mathematical Journal, 2011, 52 : 105 - 112
  • [9] MINIMAL LAGRANGIAN SUBMANIFOLDS IN INDEFINITE COMPLEX SPACE
    Anciaux, Henri
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) : 1331 - 1343
  • [10] Minimal Lagrangian submanifolds in the complex hyperbolic space
    Castro, I
    Montealegre, CR
    Urbano, F
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (03) : 695 - 721