Minimal Lagrangian submanifolds of the complex hyperquadric

被引:15
|
作者
Li, Haizhong [1 ]
Ma, Hui [1 ]
Van der Veken, Joeri [2 ]
Vrancken, Luc [2 ,3 ]
Wang, Xianfeng [4 ,5 ,6 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Katholieke Univ Leuven, Dept Math, B-3001 Leuven, Belgium
[3] Univ Polytech Hauts de France, Inst Sci & Tech Valenciennes, Campus Mt Houy, F-59313 Valenciennes, France
[4] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[5] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[6] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
基金
中国国家自然科学基金;
关键词
minimal Lagrangian submanifolds; the complex hyperquadric; constant sectional curvature; Gauss map; isoparametric hypersurface; ISOPARAMETRIC HYPERSURFACES; HAMILTONIAN STABILITY; GAUSS IMAGES; GEOMETRY; IMMERSIONS;
D O I
10.1007/s11425-019-9551-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a structural approach to study Lagrangian submanifolds of the complex hyperquadric in arbitrary dimension by using its family of non-integrable almost product structures. In particular, we define local angle functions encoding the geometry of the Lagrangian submanifold at hand. We prove that these functions are constant in the special case that the Lagrangian immersion is the Gauss map of an isoparametric hypersurface of a sphere and give the relation with the constant principal curvatures of the hypersurface. We also use our techniques to classify all minimal Lagrangian submanifolds of the complex hyperquadric which have constant sectional curvatures and all minimal Lagrangian submanifolds for which all local angle functions, respectively all but one, coincide.
引用
收藏
页码:1441 / 1462
页数:22
相关论文
共 50 条
  • [1] Minimal Lagrangian submanifolds of the complex hyperquadric
    Haizhong Li
    Hui Ma
    Joeri Van der Veken
    Luc Vrancken
    Xianfeng Wang
    [J]. Science China Mathematics, 2020, 63 : 1441 - 1462
  • [2] Minimal Lagrangian submanifolds of the complex hyperquadric
    Haizhong Li
    Hui Ma
    Joeri Van der Veken
    Luc Vrancken
    Xianfeng Wang
    [J]. Science China Mathematics, 2020, 63 (08) : 1441 - 1462
  • [3] Construction of Lagrangian Submanifolds in Complex Hyperquadric
    Chiakuei Peng
    Xiaowei Xu
    [J]. Chinese Annals of Mathematics, Series B, 2020, 41 : 465 - 478
  • [4] Construction of Lagrangian Submanifolds in Complex Hyperquadric
    Chiakuei PENG
    Xiaowei XU
    [J]. Chinese Annals of Mathematics,Series B., 2020, (03) - 478
  • [5] Construction of Lagrangian Submanifolds in Complex Hyperquadric
    Peng, Chiakuei
    Xu, Xiaowei
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2020, 41 (03) : 465 - 478
  • [6] MINIMAL LAGRANGIAN SUBMANIFOLDS IN INDEFINITE COMPLEX SPACE
    Anciaux, Henri
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) : 1331 - 1343
  • [7] Minimal Lagrangian submanifolds in the complex hyperbolic space
    Castro, I
    Montealegre, CR
    Urbano, F
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (03) : 695 - 721
  • [8] Complex analytic properties of minimal Lagrangian submanifolds
    Maccheroni, Roberta
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2020, 18 (04) : 1127 - 1146
  • [9] A class of minimal Lagrangian submanifolds in complex hyperquadrics
    Li, Haizhong
    Ma, Hui
    Wei, Guoxin
    [J]. GEOMETRIAE DEDICATA, 2012, 158 (01) : 137 - 148
  • [10] A class of minimal Lagrangian submanifolds in complex hyperquadrics
    Haizhong Li
    Hui Ma
    Guoxin Wei
    [J]. Geometriae Dedicata, 2012, 158 : 137 - 148