MINIMAL LAGRANGIAN SUBMANIFOLDS IN INDEFINITE COMPLEX SPACE

被引:2
|
作者
Anciaux, Henri [1 ]
机构
[1] Univ Sao Paulo, IME, BR-05508090 Sao Paulo, Brazil
关键词
SURFACES;
D O I
10.1215/ijm/1399395835
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the complex linear space endowed with the canonical pseudo-Hermitian form of arbitrary signature. This yields both a pseudo-Riemannian and a symplectic structure. We prove that those submanifolds which are both Lagrangian and minimal with respect to these structures minimize the volume in their Lagrangian homology class. We also describe several families of minimal Lagrangian submanifolds. In particular, we characterize the minimal Lagrangian surfaces in pseudo-Euclidean complex plane endowed with its natural neutral metric and the equivariant minimal Lagrangian submanifolds of indefinite complex space with arbitrary signature.
引用
收藏
页码:1331 / 1343
页数:13
相关论文
共 50 条
  • [1] Minimal Lagrangian submanifolds with constant sectional curvature in indefinite complex space
    Vrancken, L
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (05) : 1459 - 1466
  • [2] Minimal Lagrangian submanifolds in the complex hyperbolic space
    Castro, I
    Montealegre, CR
    Urbano, F
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (03) : 695 - 721
  • [3] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    [J]. The Journal of Geometric Analysis, 2021, 31 : 1934 - 1964
  • [4] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Cheng, Xiuxiu
    Hu, Zejun
    Moruz, Marilena
    Vrancken, Luc
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1934 - 1964
  • [5] On indefinite special Lagrangian submanifolds in indefinite complex Euclidean spaces
    Dong, Yuxin
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (06) : 710 - 726
  • [6] Conformally flat, minimal, Lagrangian submanifolds in complex space forms
    Miroslava Antić
    Luc Vrancken
    [J]. Science China Mathematics, 2022, 65 : 1641 - 1660
  • [7] On second order minimal Lagrangian submanifolds in complex space forms
    DONG Yuxin & LU Guozhen Institute of Mathematics
    [J]. Science China Mathematics, 2005, (11) : 1505 - 1516
  • [8] On second order minimal Lagrangian submanifolds in complex space forms
    Dong, YX
    Lu, GZ
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (11): : 1505 - 1516
  • [9] On second order minimal Lagrangian submanifolds in complex space forms
    DONG Yuxin LU Guozhen Institute of Mathematics Fudan University Shanghai China Department of MathematicsWayne State University Detroit MI
    [J]. Science in China,Ser.A., 2005, Ser.A.2005 (11) - 1516
  • [10] Hamiltonian-minimal Lagrangian submanifolds in complex space forms
    Castro, Ildefonso
    Li, Haizhong
    Urbano, Francisco
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (01) : 43 - 63