Deep Convolutional Autoencoders for Deblurring and Denoising Low-Resolution Images

被引:0
|
作者
Jimenez, Michael Fernando Mendez [1 ]
DeGuchy, Omar [1 ]
Marcia, Roummel F. [1 ]
机构
[1] Univ Calif Merced, Dept Appl Math, Merced, CA 95343 USA
基金
美国国家科学基金会;
关键词
NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we implement machine learning methods to recover higher-dimensional signals from lower-dimensional, noisy, and blurry measurements. In particular, rather than utilizing optimization-based reconstruction methods, we use fully-connected multilayer perceptron (MLP) architectures and convolutional neural networks (CNN). In addition, we consider two different loss functions based on mean squared error and a Huber potential to train our models. Numerical experiments on the Street View House Numbers dataset show that while fully-connected MLPs are faster to train, reconstructions using CNNs are much more accurate.
引用
收藏
页码:549 / 553
页数:5
相关论文
共 50 条
  • [41] Deep architecture for super-resolution and deblurring of text images
    Neji, Hala
    Ben Halima, Mohamed
    Nogueras-Iso, Javier
    Hamdani, Tarek M.
    Qahtani, Abdulrahman M.
    Almutiry, Omar
    Dhahri, Habib
    Alimi, Adel M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (2) : 3945 - 3961
  • [42] Deep architecture for super-resolution and deblurring of text images
    Hala Neji
    Mohamed Ben Halima
    Javier Nogueras-Iso
    Tarek M. Hamdani
    Abdulrahman M. Qahtani
    Omar Almutiry
    Habib Dhahri
    Adel M. Alimi
    Multimedia Tools and Applications, 2024, 83 : 3945 - 3961
  • [43] Super-resolution based on low-resolution, warped images
    Gonsalves, RA
    Khaghani, F
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXV, 2002, 4790 : 11 - 20
  • [44] Multi-resolution-type AAM for Low-resolution Images
    Suzuki, Satoru
    Mitsukura, Yasue
    IECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011, : 4521 - 4525
  • [45] Deep Clustering with Convolutional Autoencoders
    Guo, Xifeng
    Liu, Xinwang
    Zhu, En
    Yin, Jianping
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 373 - 382
  • [46] Making Low-Resolution Satellite Images Reborn: A Deep Learning Approach for Super-Resolution Building Extraction
    Zhang, Lixian
    Dong, Runmin
    Yuan, Shuai
    Li, Weijia
    Zheng, Juepeng
    Fu, Haohuan
    REMOTE SENSING, 2021, 13 (15)
  • [47] Seismic noise suppression based on convolutional denoising autoencoders
    Song H.
    Gao Y.
    Chen W.
    Zhang X.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2020, 55 (06): : 1210 - 1219
  • [48] Multidimensional Scaling for Matching Low-Resolution Face Images
    Biswas, Soma
    Bowyer, Kevin W.
    Flynn, Patrick J.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (10) : 2019 - 2030
  • [49] An Evolution of CNN Object Classifiers on Low-Resolution Images
    Kabir, Mohsin
    Ohi, Abu Quwsar
    Rahman, Saifur
    Mridha, M. F.
    2020 IEEE 17TH INTERNATIONAL CONFERENCE ON SMART COMMUNITIES: IMPROVING QUALITY OF LIFE USING ICT, IOT AND AI (IEEEHONET 2020), 2020, : 209 - 213
  • [50] A MULTILEVEL ALGORITHM FOR SIMULTANEOUSLY DENOISING AND DEBLURRING IMAGES
    Chan, Raymond H.
    Chen, Ke
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02): : 1043 - 1063