Deep Convolutional Autoencoders for Deblurring and Denoising Low-Resolution Images

被引:0
|
作者
Jimenez, Michael Fernando Mendez [1 ]
DeGuchy, Omar [1 ]
Marcia, Roummel F. [1 ]
机构
[1] Univ Calif Merced, Dept Appl Math, Merced, CA 95343 USA
基金
美国国家科学基金会;
关键词
NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we implement machine learning methods to recover higher-dimensional signals from lower-dimensional, noisy, and blurry measurements. In particular, rather than utilizing optimization-based reconstruction methods, we use fully-connected multilayer perceptron (MLP) architectures and convolutional neural networks (CNN). In addition, we consider two different loss functions based on mean squared error and a Huber potential to train our models. Numerical experiments on the Street View House Numbers dataset show that while fully-connected MLPs are faster to train, reconstructions using CNNs are much more accurate.
引用
收藏
页码:549 / 553
页数:5
相关论文
共 50 条
  • [31] Quality Enhancement of Low-Resolution Face Images
    Nejad, Yashar Kiarashi
    Masnadi-Shirazi, Mohammadali
    Yazdi, Mehran
    Shahvar, Mohamadreza Zand
    2015 9TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2015, : 228 - 231
  • [32] Face Detection in Low-Resolution Color Images
    Zheng, Jun
    Ramirez, Geovany A.
    Fuentes, Olac
    IMAGE ANALYSIS AND RECOGNITION, PT I, PROCEEDINGS, 2010, 6111 : 454 - 463
  • [33] Convolutional low-resolution fine-grained classification
    Cai, Dingding
    Chen, Ke
    Qian, Yanlin
    Kamarainen, Joni-Kristian
    PATTERN RECOGNITION LETTERS, 2019, 119 : 166 - 171
  • [34] Sparse Convolutional Denoising Autoencoders for Genotype Imputation
    Chen, Junjie
    Shi, Xinghua
    GENES, 2019, 10 (09)
  • [35] Pedestrian detection in low-resolution thermal images
    Gorska, A.
    Guzal, P.
    Namiotko, I
    Wedolowska, A.
    Wloszczynska, M.
    Ruminski, J.
    2022 15TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2022,
  • [36] Automatic Classification of Low-Resolution Chromosomal Images
    Swati, Swati
    Sharma, Monika
    Vig, Lovekesh
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT VI, 2019, 11134 : 315 - 325
  • [37] Low-resolution palmprint image denoising by generative adversarial networks
    Chen, Shengjie
    Chen, Shuo
    Guo, Zhenhua
    Zuo, Yushen
    NEUROCOMPUTING, 2019, 358 : 275 - 284
  • [38] Deep architecture for super-resolution and deblurring of text images
    Neji, Hala
    Halima, Mohamed Ben
    Nogueras-Iso, Javier
    Hamdani, Tarek M.
    Qahtani, Abdulrahman M.
    Almutiry, Omar
    Dhahri, Habib
    Alimi, Adel M.
    Multimedia Tools and Applications, 2024, 83 (02) : 3945 - 3961
  • [39] ROTDR signal enhancement via deep convolutional denoising autoencoders trained with domain randomization
    Laarossi, I.
    Pardo, A.
    Conde, O. M.
    Quintela, M. A.
    Lopez-Higuera, J. M.
    SEVENTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS (EWOFS 2019), 2019, 11199
  • [40] Multimodal Deep Denoising Convolutional Autoencoders for Pain Intensity Classification based on Physiological Signals
    Thiam, Patrick
    Kestler, Hans
    Schwenker, Friedhelm
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 289 - 296