Estimation of long-range dependence in gappy Gaussian time series

被引:1
|
作者
Craigmile, Peter F. [1 ]
Mondal, Debashis [2 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[2] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Between-wavelet-scale correlation; Hurst index; Missing data; Power law; Sandwich estimator; Self-similar noise; REGRESSION WAVELET ESTIMATION; CENTRAL-LIMIT-THEOREM; MEMORY PARAMETER; SPECTRAL-ANALYSIS; LIKELIHOOD; SELECTION; DENSITY; TRENDS;
D O I
10.1007/s11222-019-09874-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Knowledge of the long-range dependence (LRD) parameter is critical to studies of self-similar behavior. However, statistical estimation of the LRD parameter becomes difficult when the observed data are masked by short-range dependence and other noises or are gappy in nature (i.e., some values are missing in an otherwise regular sampling). Currently there is a lack of theory for spectral- and wavelet-based estimators of the LRD parameter for gappy data. To address this, we estimate the LRD parameter for gappy Gaussian semiparametric time series based upon undecimated wavelet variances. We develop estimation methods by using novel estimators of the wavelet variances, providing asymptotic theory for the joint distribution of the wavelet variances and our estimator of the LRD parameter. We introduce sandwich estimators to compute standard errors for our estimates. We demonstrate the efficacy of our methods using Monte Carlo simulations and provide guidance on practical issues such as how to select the range of wavelet scales. We demonstrate the methodology using two applications: one for gappy Arctic sea-ice draft data and another for gap-free and gappy daily average temperature data collected at 17 locations in south central Sweden.
引用
收藏
页码:167 / 185
页数:19
相关论文
共 50 条
  • [41] Another cause of long-range time dependence
    Hara, S
    Taketsugu, J
    WIRELESS PERSONAL COMMUNICATIONS, 2002, 23 (01) : 207 - 216
  • [42] Estimation of the largest Lyapunov Exponent for Long-range Correlated Stochastic Time Series
    Gorshkov, Oleg
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2520 - 2523
  • [43] Long-range dependent time series specification
    Gao, Jiti
    Wang, Qiying
    Yin, Jiying
    BERNOULLI, 2013, 19 (5A) : 1714 - 1749
  • [44] Long-Range Dependent Curve Time Series
    Li, Degui
    Robinson, Peter M.
    Shang, Han Lin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 957 - 971
  • [45] Spatiotemporal generation of long-range dependence models and estimation
    Frías, MP
    Ruiz-Medina, MD
    Alonso, FJ
    Angulo, JM
    ENVIRONMETRICS, 2006, 17 (02) : 139 - 146
  • [46] Multivariate Wavelet Whittle Estimation in Long-range Dependence
    Achard, Sophie
    Gannaz, Irene
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (04) : 476 - 512
  • [47] On-line estimation of the parameters of long-range dependence
    Roughan, M
    Veitch, D
    Abry, P
    GLOBECOM 98: IEEE GLOBECOM 1998 - CONFERENCE RECORD, VOLS 1-6: THE BRIDGE TO GLOBAL INTEGRATION, 1998, : 3716 - 3721
  • [48] DENSITY-ESTIMATION UNDER LONG-RANGE DEPENDENCE
    CSORGO, S
    MIELNICZUK, J
    ANNALS OF STATISTICS, 1995, 23 (03): : 990 - 999
  • [49] A novel approach to the estimation of the long-range dependence parameter
    Kettani, Houssain
    Gubner, John A.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (06) : 463 - 467
  • [50] On-line estimation of the parameters of long-range dependence
    RMIT Univ, Carlton, Australia
    Conf Rec IEEE Global Telecommun Conf, (3716-3721):