Estimation of long-range dependence in gappy Gaussian time series

被引:1
|
作者
Craigmile, Peter F. [1 ]
Mondal, Debashis [2 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[2] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Between-wavelet-scale correlation; Hurst index; Missing data; Power law; Sandwich estimator; Self-similar noise; REGRESSION WAVELET ESTIMATION; CENTRAL-LIMIT-THEOREM; MEMORY PARAMETER; SPECTRAL-ANALYSIS; LIKELIHOOD; SELECTION; DENSITY; TRENDS;
D O I
10.1007/s11222-019-09874-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Knowledge of the long-range dependence (LRD) parameter is critical to studies of self-similar behavior. However, statistical estimation of the LRD parameter becomes difficult when the observed data are masked by short-range dependence and other noises or are gappy in nature (i.e., some values are missing in an otherwise regular sampling). Currently there is a lack of theory for spectral- and wavelet-based estimators of the LRD parameter for gappy data. To address this, we estimate the LRD parameter for gappy Gaussian semiparametric time series based upon undecimated wavelet variances. We develop estimation methods by using novel estimators of the wavelet variances, providing asymptotic theory for the joint distribution of the wavelet variances and our estimator of the LRD parameter. We introduce sandwich estimators to compute standard errors for our estimates. We demonstrate the efficacy of our methods using Monte Carlo simulations and provide guidance on practical issues such as how to select the range of wavelet scales. We demonstrate the methodology using two applications: one for gappy Arctic sea-ice draft data and another for gap-free and gappy daily average temperature data collected at 17 locations in south central Sweden.
引用
收藏
页码:167 / 185
页数:19
相关论文
共 50 条
  • [21] Detecting long-range dependence in non-stationary time series
    Dette, Holger
    Preuss, Philip
    Sen, Kemal
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1600 - 1659
  • [22] Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects
    Mikosch, T
    Starica, C
    REVIEW OF ECONOMICS AND STATISTICS, 2004, 86 (01) : 378 - 390
  • [23] Boosting the HP filter for trending time series with long-range dependence
    Biswas, Eva
    Sabzikar, Farzad
    Phillips, Peter C. B.
    ECONOMETRIC REVIEWS, 2024,
  • [24] Gaussian semiparametric estimation of long range dependence
    Robinson, PM
    ANNALS OF STATISTICS, 1995, 23 (05): : 1630 - 1661
  • [25] Semiparametric estimation of spatial long-range dependence
    Frias, M. P.
    Alonso, F. J.
    Ruiz-Medina, M. D.
    Angulo, J. M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (05) : 1479 - 1495
  • [26] Test of change point versus long-range dependence in functional time series
    Baek, Changryong
    Kokoszka, Piotr
    Meng, Xiangdong
    JOURNAL OF TIME SERIES ANALYSIS, 2024, 45 (04) : 497 - 512
  • [27] LOG-PERIODOGRAM REGRESSION OF TIME-SERIES WITH LONG-RANGE DEPENDENCE
    ROBINSON, PM
    ANNALS OF STATISTICS, 1995, 23 (03): : 1048 - 1072
  • [28] Time Series Modeling of Sunspot Numbers Using Long-Range Cyclical Dependence
    Luis A. Gil-Alana
    Solar Physics, 2009, 257 : 371 - 381
  • [29] Stochastic models for characterisation and prediction of time series with long-range dependence and fractality
    Anh, V
    Lunney, K
    Peiris, S
    ENVIRONMENTAL MODELLING & SOFTWARE, 1997, 12 (01) : 67 - 73
  • [30] Estimating long-range dependence in time series: An evaluation of estimators implemented in R
    Esther Stroe-Kunold
    Tetiana Stadnytska
    Joachim Werner
    Simone Braun
    Behavior Research Methods, 2009, 41 : 909 - 923