On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives

被引:19
|
作者
Tran Bao Ngoc [1 ]
Zhou, Yong [2 ,3 ]
O'Regan, Donal [4 ]
Nguyen Huy Tuan [5 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau 999078, Peoples R China
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[5] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
关键词
Riemann-Liouville fractional derivative; fractional diffusion equation; Well-posedness; Regularity estimates; GLOBAL EXISTENCE; BACKWARD PROBLEM; BLOW-UP; DIFFUSION EQUATION; TIME; CALCULUS;
D O I
10.1016/j.aml.2020.106373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the terminal value problem for pseudo-parabolic equations with Riemann-Liouville fractional derivatives, from a given final value and we investigate the existence (and regularity) of mild solutions. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Note on a Kirchhoff type Boundary Value Problem Involving Riemann-Liouville Fractional Derivative
    Rehman, Nadeem ur
    Alyami, Maryam Ahmed
    Alhirabi, Hawatin Mohammed
    Ghanmi, Abdeljabbar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [22] Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives
    Li Kexue
    Peng Jigen
    Jia Junxiong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 476 - 510
  • [23] Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives
    Wang, Wuyang
    Ye, Jun
    Xu, Jiafa
    O'Regan, Donal
    SYMMETRY-BASEL, 2022, 14 (11):
  • [24] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [25] Existence of the positive solutions for boundary value problems of mixed differential equations involving the Caputo and Riemann-Liouville fractional derivatives
    Liu, Yujing
    Yan, Chenguang
    Jiang, Weihua
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [26] On a singular Riemann-Liouville fractional boundary value problem with parameters
    Tudorache, Alexandru
    Luca, Rodica
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (01): : 151 - 168
  • [27] Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem
    Xie, Wenzhe
    Xiao, Jing
    Luo, Zhiguo
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [28] RIEMANN-STIELTJES INTEGRAL BOUNDARY VALUE PROBLEMS INVOLVING MIXED RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Ahmad, Bashir
    Alruwaily, Ymnah
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [29] Riemann-stieltjes integral boundary value problems involving mixed riemann-liouville and caputo fractional derivatives
    Ahmad B.
    Alruwaily Y.
    Alsaedi A.
    Ntouyas S.K.
    Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [30] Monotone iterative technique for periodic problem involving Riemann-Liouville fractional derivatives in Banach spaces
    Ding, Yonghong
    Li, Yongxiang
    BOUNDARY VALUE PROBLEMS, 2018,