Eigenvalues of Hadamard powers of large symmetric Pascal matrices

被引:2
|
作者
Ashrafi, A
Gibson, PM
机构
[1] Univ Alabama, Dept Math Sci, Huntsville, AL 35899 USA
[2] Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL 35899 USA
关键词
eigenvalues; symmetric Pascal matrices; real Hadamard powers; Perron roots; positive matrices; positive definite matrices; convergence; MATLAB;
D O I
10.1016/j.laa.2005.02.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S, be the positive real symmetric matrix of order n with (i, j) entry equal to [GRAPHICS] and let x be a positive real number. Eigenvalues of the Hadamard (or entry j - I wise) power S-n((x)) are considered. In particular for k a positive integer, it is shown that both the Perron root and the trace of S-n((k)) are approximately equal to 4(k)/4(k)-1 [GRAPHICS] (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 50 条
  • [41] INFERENCE FOR EIGENVALUES AND EIGENVECTORS OF GAUSSIAN SYMMETRIC MATRICES
    Schwartzman, Armin
    Mascarenhas, Walter F.
    Taylor, Jonathan E.
    ANNALS OF STATISTICS, 2008, 36 (06): : 2886 - 2919
  • [42] A simple estimate for the smaller eigenvalues of symmetric matrices
    Gonzalez, Augusto
    REVISTA CUBANA DE FISICA, 2010, 27 (2B): : 208 - 211
  • [43] Eigenvalues of symmetric matrices over integral domains
    Kummer, Mario
    JOURNAL OF ALGEBRA, 2016, 466 : 195 - 203
  • [44] Analysis and Computation of Eigenvalues of Symmetric Fuzzy Matrices
    De Vlieger, Jeroen
    Meerbergen, Karl
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 278 - 281
  • [45] Asymptotics of eigenvalues of symmetric Toeplitz band matrices
    Batalshchikov, A. A.
    Grudsky, S. M.
    Stukopin, V. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 464 - 486
  • [46] LOCATING EIGENVALUES OF SYMMETRIC MATRICES- A SURVEY*
    Hoppen, Carlos
    Jacobs, David
    Trevisan, Vilmar
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2024, 40 : 81 - 139
  • [47] On the Geometry of the Set of Symmetric Matrices with Repeated Eigenvalues
    Breiding P.
    Kozhasov K.
    Lerario A.
    Arnold Mathematical Journal, 2018, 4 (3-4) : 423 - 443
  • [48] The eigenvalues of very sparse random symmetric matrices
    Juozulynas A.
    Lithuanian Mathematical Journal, 2004, 44 (1) : 62 - 70
  • [49] Homotopy method for the eigenvalues of symmetric tridiagonal matrices
    Brockman, Philip
    Carson, Timothy
    Cheng, Yun
    Elgindi, T. M.
    Jensen, K.
    Zhoun, X.
    Elgindi, M. B. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 644 - 653
  • [50] Factorizations and eigenvalues of fibonacci and symmetric fibonacci matrices
    Lee, GY
    Kim, JS
    Lee, SG
    FIBONACCI QUARTERLY, 2002, 40 (03): : 203 - 211