Eigenvalues of Hadamard powers of large symmetric Pascal matrices

被引:2
|
作者
Ashrafi, A
Gibson, PM
机构
[1] Univ Alabama, Dept Math Sci, Huntsville, AL 35899 USA
[2] Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL 35899 USA
关键词
eigenvalues; symmetric Pascal matrices; real Hadamard powers; Perron roots; positive matrices; positive definite matrices; convergence; MATLAB;
D O I
10.1016/j.laa.2005.02.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S, be the positive real symmetric matrix of order n with (i, j) entry equal to [GRAPHICS] and let x be a positive real number. Eigenvalues of the Hadamard (or entry j - I wise) power S-n((x)) are considered. In particular for k a positive integer, it is shown that both the Perron root and the trace of S-n((k)) are approximately equal to 4(k)/4(k)-1 [GRAPHICS] (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 50 条
  • [21] Real symmetric matrices and their negative eigenvalues
    Mohammadian, Ali
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 640 : 6 - 11
  • [22] Bounds for the extreme eigenvalues of symmetric matrices
    Huang, TZ
    Xu, CX
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (03): : 214 - 216
  • [23] Eigenvalues bounds for symmetric interval matrices
    Singh, Sukhjit
    Gupta, D. K.
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (04) : 311 - 322
  • [24] EIGENVALUES AND EIGENVECTORS OF SYMMETRIC CENTROSYMMETRIC MATRICES
    CANTONI, A
    BUTLER, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) : 275 - 288
  • [25] THE DETERMINATION OF EIGENVALUES OF SYMMETRIC QUINDIAGONAL MATRICES
    SENTANCE, WA
    CLIFF, IP
    [J]. COMPUTER JOURNAL, 1981, 24 (02): : 177 - 179
  • [26] Real symmetric matrices and their negative eigenvalues
    Mohammadian, Ali
    [J]. Linear Algebra and Its Applications, 2022, 640 : 6 - 11
  • [27] EIGENVALUES OF SYMMETRIC (+1, -1) MATRICES
    HOFFMAN, AJ
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1974, 17 (01) : 69 - 75
  • [28] On the concentration of eigenvalues of random symmetric matrices
    Alon, N
    Krivelevich, M
    Vu, VH
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2002, 131 (1) : 259 - 267
  • [29] On Eigenvalues of Row-Inverted Sylvester Hadamard Matrices
    Seung-Rae Lee
    Jong-Seon No
    Eun-Ho Shin
    Habong Chung
    [J]. Results in Mathematics, 2009, 54 : 117 - 126
  • [30] On Eigenvalues of Row-Inverted Sylvester Hadamard Matrices
    Lee, Seung-Rae
    No, Jong-Seon
    Shin, Eun-Ho
    Chung, Habong
    [J]. RESULTS IN MATHEMATICS, 2009, 54 (1-2) : 117 - 126