Hindman's theorem and idempotent types

被引:0
|
作者
Andrews, Uri [1 ]
Goldbring, Isaac [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Calif Irvine, Dept Math, 340 Rowland Hall,Bldg 400, Irvine, CA 92697 USA
关键词
IP set; Hindman's theorem; Idempotent type;
D O I
10.1007/s00233-018-9943-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a question of Di Nasso, we show that Hindman's theorem is equivalent to the existence of idempotent types in countable complete extensions of Peano Arithmetic.
引用
收藏
页码:471 / 477
页数:7
相关论文
共 50 条