Hindman's theorem and idempotent types

被引:0
|
作者
Andrews, Uri [1 ]
Goldbring, Isaac [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Calif Irvine, Dept Math, 340 Rowland Hall,Bldg 400, Irvine, CA 92697 USA
关键词
IP set; Hindman's theorem; Idempotent type;
D O I
10.1007/s00233-018-9943-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a question of Di Nasso, we show that Hindman's theorem is equivalent to the existence of idempotent types in countable complete extensions of Peano Arithmetic.
引用
收藏
页码:471 / 477
页数:7
相关论文
共 50 条
  • [31] Flow compactifications of nondiscrete monoids, idempotents and Hindman's theorem
    Ball, RN
    Hagler, JN
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (02) : 319 - 342
  • [32] Flow Compactifications of Nondiscrete Monoids, Idempotents and Hindman's Theorem
    Richard N. Ball
    James N. Hagler
    Czechoslovak Mathematical Journal, 2003, 53 : 319 - 342
  • [33] New bounds on the strength of some restrictions of Hindman's Theorem
    Carlucci, Lorenzo
    Kolodziejczyk, Leszek Aleksander
    Lepore, Francesco
    Zdanowski, Konrad
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2020, 9 (02): : 139 - 153
  • [34] New Bounds on the Strength of Some Restrictions of Hindman's Theorem
    Carlucci, Lorenzo
    Kolodziejczyk, Leszek Aleksander
    Lepore, Francesco
    Zdanowski, Konrad
    UNVEILING DYNAMICS AND COMPLEXITY, CIE 2017, 2017, 10307 : 210 - 220
  • [35] HINDMAN'S THEOREM: AN ULTRAFILTER ARGUMENT IN SECOND ORDER ARITHMETIC
    Towsner, Henry
    JOURNAL OF SYMBOLIC LOGIC, 2011, 76 (01) : 353 - 360
  • [36] "WEAK YET STRONG" RESTRICTIONS OF HINDMAN'S FINITE SUMS THEOREM
    Carlucci, Lorenzo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 819 - 829
  • [37] The reverse mathematics of Hindman's Theorem for sums of exactly two elements
    Csima, Barbara F.
    Dzhafarov, Damir D.
    Hirschfeldt, Denis R.
    Jockusch, Carl G., Jr.
    Solomon, Reed
    Westrick, Linda Brown
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2019, 8 (3-4): : 253 - 263
  • [38] A RECURSIVE COLORING FUNCTION WITHOUT Π03 SOLUTIONS FOR HINDMAN'S THEOREM
    Liao, Yuke
    JOURNAL OF SYMBOLIC LOGIC, 2024,
  • [39] A COMBINATORIAL PROOF OF A STRONGER DENSE HINDMAN THEOREM
    McCutcheon, Randall
    COLLOQUIUM MATHEMATICUM, 2020, 162 (02) : 303 - 310
  • [40] Amitsur's theorem, semicentral idempotents, and additively idempotent semirings
    Rachev, Martin
    Trendafilov, Ivan
    OPEN MATHEMATICS, 2024, 22 (01):