Hindman's theorem and idempotent types

被引:0
|
作者
Andrews, Uri [1 ]
Goldbring, Isaac [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Calif Irvine, Dept Math, 340 Rowland Hall,Bldg 400, Irvine, CA 92697 USA
关键词
IP set; Hindman's theorem; Idempotent type;
D O I
10.1007/s00233-018-9943-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a question of Di Nasso, we show that Hindman's theorem is equivalent to the existence of idempotent types in countable complete extensions of Peano Arithmetic.
引用
收藏
页码:471 / 477
页数:7
相关论文
共 50 条
  • [1] Hindman’s theorem and idempotent types
    Uri Andrews
    Isaac Goldbring
    Semigroup Forum, 2018, 97 : 471 - 477
  • [2] Hindman’s theorem and choice
    E. Tachtsis
    Acta Mathematica Hungarica, 2022, 168 : 402 - 424
  • [3] HINDMAN'S THEOREM AND CHOICE
    Tachtsis, E.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (02) : 402 - 424
  • [4] Restrictions of Hindman's Theorem: An Overview
    Carlucci, Lorenzo
    CONNECTING WITH COMPUTABILITY, 2021, 12813 : 94 - 105
  • [5] Regressive versions of Hindman's theorem
    Carlucci, Lorenzo
    Mainardi, Leonardo
    ARCHIVE FOR MATHEMATICAL LOGIC, 2024, 63 (3-4) : 447 - 472
  • [6] Regressive versions of Hindman’s theorem
    Lorenzo Carlucci
    Leonardo Mainardi
    Archive for Mathematical Logic, 2024, 63 : 447 - 472
  • [7] Transfinite approximation of Hindman's theorem
    Beiglboeck, Mathias
    Towsner, Henry
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 191 (01) : 41 - 59
  • [8] Transfinite approximation of Hindman’s theorem
    Mathias Beiglböck
    Henry Towsner
    Israel Journal of Mathematics, 2012, 191 : 41 - 59
  • [9] Is there a symmetric version of Hindman's Theorem?
    Akin, Ethan
    Glasner, Eli
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 142 : 29 - 43
  • [10] Hindman's theorem in the hierarchy of choice principles
    Fernandez-Breton, David
    JOURNAL OF MATHEMATICAL LOGIC, 2024, 24 (01)