An interactive cluster heat map to visualize and explore multidimensional metabolomic data

被引:37
|
作者
Ivanisevic, Julijana [1 ]
Benton, H. Paul [1 ]
Rinehart, Duane [1 ]
Epstein, Adrian [2 ]
Kurczy, Michael E. [1 ]
Boska, Michael D. [3 ]
Gendelman, Howard E. [2 ]
Siuzdak, Gary [1 ]
机构
[1] Scripps Res Inst, Scripps Ctr Metab, La Jolla, CA 92037 USA
[2] Univ Nebraska Med Ctr, Dept Pharmacol & Expt Neurosci, Omaha, NE 68198 USA
[3] Univ Nebraska Med Ctr, Dept Radiol, Omaha, NE 68198 USA
基金
美国国家卫生研究院;
关键词
XCMS Online; Metabolomics; Bioinformatics software; Interactive cluster heat map; Anatomical brain regions; Brain metabolomics;
D O I
10.1007/s11306-014-0759-2
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Heat maps are a commonly used visualization tool for metabolomic data where the relative abundance of ions detected in each sample is represented with color intensity. A limitation of applying heat maps to global metabolomic data, however, is the large number of ions that have to be displayed and the lack of information provided about important metabolomic parameters such as m/z and retention time. Here we address these challenges by introducing the interactive cluster heat map in the data-processing software XCMS Online. XCMS Online (xcmsonline.scripps.edu) is a cloud-based informatic platform designed to process, statistically evaluate, and visualize mass-spectrometry based metabolomic data. An interactive heat map is provided for all data processed by XCMS Online. The heat map is clickable, allowing users to zoom and explore specific metabolite metadata (EICs, Box-and-whisker plots, mass spectra) that are linked to the METLIN metabolite database. The utility of the XCMS interactive heat map is demonstrated on metabolomic data set generated from different anatomical regions of the mouse brain.
引用
收藏
页码:1029 / 1034
页数:6
相关论文
共 50 条
  • [31] Interactive visual formula composition of multidimensional data classifiers
    Derstroff, Adrian
    Leistikow, Simon
    Nahardani, Ali
    Gruen, Katja
    Franz, Marcus
    Hoerr, Verena
    Linsen, Lars
    INFORMATION VISUALIZATION, 2025, 24 (01) : 42 - 61
  • [32] Designing an Interactive Visualization to Explore Eye-movement Data
    Jim Morey
    John Gammack
    The Review of Socionetwork Strategies, 2016, 10 (2) : 73 - 89
  • [33] Suggesting Assess Queries for Interactive Analysis of Multidimensional Data
    Francia, Matteo
    Golfarelli, Matteo
    Marcel, Patrick
    Rizzi, Stefano
    Vassiliadis, Panos
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6421 - 6434
  • [34] Conversations in Time: Interactive Visualization to Explore Structured Temporal Data
    Wang, Earo
    Cook, Dianne
    R JOURNAL, 2021, 13 (01): : 516 - 524
  • [35] Designing an Interactive Visualization to Explore Eye-movement Data
    Morey, Jim
    Gammack, John
    REVIEW OF SOCIONETWORK STRATEGIES, 2016, 10 (02): : 73 - 89
  • [36] Multidimensional data visual exploration by interactive information segments
    Ferrer-Troyano, FJ
    Aguilar-Ruiz, JS
    Riquelme, JC
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2004, 3181 : 239 - 248
  • [37] Interactive multidimensional modeling of linked data for exploratory OLAP
    Gallinucci, Enrico
    Golfarelli, Matteo
    Rizzi, Stefano
    Abello, Alberto
    Romero, Oscar
    INFORMATION SYSTEMS, 2018, 77 : 86 - 104
  • [38] Data Aggregation and Distance Encoding for Interactive Large Multidimensional Data Visualization
    Decheva, Desislava
    Linsen, Lars
    VISIGRAPP 2018: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS / INTERNATIONAL CONFERENCE ON INFORMATION VISUALIZATION THEORY AND APPLICATIONS (IVAPP), VOL 3, 2018, : 222 - 232
  • [39] AN VISUAL ANALYTICS APPROACH TO EXPLORE CRIMINAL PATTERNS BASED ON MULTIDIMENSIONAL DATA
    Li, Daichao
    Wang, Yingjie
    Wu, Sheng
    Qi, Junhui
    Wang, Tingting
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5563 - 5566
  • [40] Mass isotopomer-guided decluttering of metabolomic data to visualize endogenous biomarkers of drug toxicity
    Beyoglu, Diren
    Zhou, Yuyin
    Chen, Chi
    Idle, Jeffrey R.
    BIOCHEMICAL PHARMACOLOGY, 2018, 156 : 491 - 500