An interactive cluster heat map to visualize and explore multidimensional metabolomic data

被引:37
|
作者
Ivanisevic, Julijana [1 ]
Benton, H. Paul [1 ]
Rinehart, Duane [1 ]
Epstein, Adrian [2 ]
Kurczy, Michael E. [1 ]
Boska, Michael D. [3 ]
Gendelman, Howard E. [2 ]
Siuzdak, Gary [1 ]
机构
[1] Scripps Res Inst, Scripps Ctr Metab, La Jolla, CA 92037 USA
[2] Univ Nebraska Med Ctr, Dept Pharmacol & Expt Neurosci, Omaha, NE 68198 USA
[3] Univ Nebraska Med Ctr, Dept Radiol, Omaha, NE 68198 USA
基金
美国国家卫生研究院;
关键词
XCMS Online; Metabolomics; Bioinformatics software; Interactive cluster heat map; Anatomical brain regions; Brain metabolomics;
D O I
10.1007/s11306-014-0759-2
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Heat maps are a commonly used visualization tool for metabolomic data where the relative abundance of ions detected in each sample is represented with color intensity. A limitation of applying heat maps to global metabolomic data, however, is the large number of ions that have to be displayed and the lack of information provided about important metabolomic parameters such as m/z and retention time. Here we address these challenges by introducing the interactive cluster heat map in the data-processing software XCMS Online. XCMS Online (xcmsonline.scripps.edu) is a cloud-based informatic platform designed to process, statistically evaluate, and visualize mass-spectrometry based metabolomic data. An interactive heat map is provided for all data processed by XCMS Online. The heat map is clickable, allowing users to zoom and explore specific metabolite metadata (EICs, Box-and-whisker plots, mass spectra) that are linked to the METLIN metabolite database. The utility of the XCMS interactive heat map is demonstrated on metabolomic data set generated from different anatomical regions of the mouse brain.
引用
收藏
页码:1029 / 1034
页数:6
相关论文
共 50 条
  • [21] Interactive Data Mining on a CBEA Cluster
    McConnell, Sabine
    Patton, David
    Hurley, Richard
    Blight, Wilfred
    Young, Graeme
    HIGH PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS, 2010, 5976 : 269 - +
  • [22] A Heat Map Generation to Visualize Engagement in Classes Using Moodle Learning Logs
    Dobashi, Konomu
    Ho, Curtis P.
    Fulford, Catherine P.
    Lin, Meng-Fen Grace
    PROCEEDINGS OF THE 2019 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (INCIT): ENCOMPASSING INTELLIGENT TECHNOLOGY AND INNOVATION TOWARDS THE NEW ERA OF HUMAN LIFE, 2019, : 138 - 143
  • [23] Using Auto-Associative Neural Networks to Compress and Visualize Multidimensional Data
    Zin, Zalhan Mohd
    2014 11TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2014, : 408 - 412
  • [24] Animating multidimensional scaling ta visualize N-dimensional data sets
    Bentley, CL
    Ward, MO
    IEEE SYMPOSIUM ON INFORMATION VISUALIZATION '96, PROCEEDINGS, 1996, : 72 - +
  • [25] Explore, Visualize, and Analyze Functional Cancer Proteomic Data Using the Cancer Proteome Atlas
    Li, Jun
    Akbani, Rehan
    Zhao, Wei
    Lu, Yiling
    Weinstein, John N.
    Mills, Gordon B.
    Liang, Han
    CANCER RESEARCH, 2017, 77 (21) : E51 - E54
  • [26] Cluster Identification in Time Dependent Multidimensional Data
    Krammer, Peter
    Kvassay, Marcel
    Hluchy, Ladislav
    2017 IEEE 14TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATICS, 2017, : 185 - 193
  • [27] Interactive heat map for evaluation of container handling process
    Department of Industrial Engineering, Pusan National University, 30-San Jan-Jeon Dong, Geum-Jeong Gu, Busan
    609-735, Korea, Republic of
    ICIC Express Lett Part B Appl., 12 (3385-3392):
  • [28] iSPLOM: Interactive with Scatterplot Matrix for Exploring Multidimensional Data
    Tran Van Long
    KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2013), VOL 1, 2014, 244 : 175 - 186
  • [29] Interactive feature space extension for multidimensional data projection
    Perez, Daniel
    Zhang, Leishi
    Schaefer, Matthias
    Schreck, Tobias
    Keim, Daniel
    Diaz, Ignacio
    NEUROCOMPUTING, 2015, 150 : 611 - 626
  • [30] MILVA: An interactive tool for the exploration of multidimensional microarray data
    D'Alimonte, D
    Lowe, D
    Nabney, IT
    Mersinias, V
    Smith, CP
    BIOINFORMATICS, 2005, 21 (22) : 4192 - 4193