Possibilistic c-Means for considering of Neutron and Density Porosity

被引:0
|
作者
Koohani, P. Nouri [1 ]
Zarandi, M. H. Fazel [1 ]
Seifipour, N. [2 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, POB 15875-4413, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Inhibitor, Tehran, Iran
关键词
Gamma Ray; Log; porosity; Possibilistic C-Means clustering; Resistivity;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Petro physical parameters are important for predicting capacity of reservoir so, many modern oil and gas wells are drilled directly. Based on measuring these parameters, logging operations is done to achieve a complete log of every well. In some cases a complete set of data with minimum error of logs is achieved, but for various reasons such as failure to complete the logging of old wells logs are incomplete or inadequate, so getting complete set of data is too hard or impossible. Density and Neutron porosity are two of the important results of logging. As a result in this study these two parameters have been considered by Possibilistic C-Means clustering to evaluate its range. Gamma ray, Deep resistivity and sonic log are used for inputs.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    SOFT COMPUTING, 2010, 14 (05) : 487 - 494
  • [32] Generalized possibilistic c-means clustering with double weighting exponents
    Wu, Chengmao
    Yu, Dongxue
    INFORMATION SCIENCES, 2023, 645
  • [33] Divide-conquer method for improving possibilistic c-means
    Yu, J.
    Woo, W.
    ELECTRONICS LETTERS, 2017, 53 (03) : 154 - 156
  • [34] A Generalized Multivariate Approach for Possibilistic Fuzzy C-Means Clustering
    Pimentel, Bruno Almeida
    de Souza, Renata M. C. R.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2018, 26 (06) : 893 - 916
  • [35] A generalized fuzzy-possibilistic c-means clustering algorithm
    Naghi, Mirtill-Boglarka
    Kovacs, Levente
    Szilagyi, Laszlo
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2023, 15 (02) : 404 - 431
  • [36] Cutset-type possibilistic c-means clustering algorithm
    Yu, Haiyan
    Fan, Jiulun
    APPLIED SOFT COMPUTING, 2018, 64 : 401 - 422
  • [37] POSSIBILISTIC FUZZY C-MEANS CLUSTERING ON MEDICAL DIAGNOSTIC SYSTEMS
    Simhachalam, B.
    Ganesan, G.
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 1125 - 1129
  • [38] A Fully-Unsupervised Possibilistic C-Means Clustering Algorithm
    Yang, Miin-Shen
    Chang-Chien, Shou-Jen
    Nataliani, Yessica
    IEEE ACCESS, 2018, 6 : 78308 - 78320
  • [39] Kernel fuzzy-possibilistic c-means clustering algorithm
    Wu, Xiao-Hong
    Zhou, Jian-Jiang
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 1712 - 1717
  • [40] RFID intrusion detection with possibilistic fuzzy c-Means clustering
    Yang, Haidong
    Li, Chunsheng
    Hu, Jue
    Journal of Computational Information Systems, 2010, 6 (08): : 2623 - 2632