Possibilistic c-Means for considering of Neutron and Density Porosity

被引:0
|
作者
Koohani, P. Nouri [1 ]
Zarandi, M. H. Fazel [1 ]
Seifipour, N. [2 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, POB 15875-4413, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Inhibitor, Tehran, Iran
关键词
Gamma Ray; Log; porosity; Possibilistic C-Means clustering; Resistivity;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Petro physical parameters are important for predicting capacity of reservoir so, many modern oil and gas wells are drilled directly. Based on measuring these parameters, logging operations is done to achieve a complete log of every well. In some cases a complete set of data with minimum error of logs is achieved, but for various reasons such as failure to complete the logging of old wells logs are incomplete or inadequate, so getting complete set of data is too hard or impossible. Density and Neutron porosity are two of the important results of logging. As a result in this study these two parameters have been considered by Possibilistic C-Means clustering to evaluate its range. Gamma ray, Deep resistivity and sonic log are used for inputs.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Improved possibilistic C-means clustering algorithms
    Zhang, JS
    Leung, YW
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (02) : 209 - 217
  • [12] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [13] Possibilistic fuzzy c-means with partial supervision
    Antoine, Violaine
    Guerrero, Jose A.
    Romero, Gerardo
    FUZZY SETS AND SYSTEMS, 2022, 449 : 162 - 186
  • [14] Weighted possibilistic c-means clustering algorithms
    Schneider, A
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 176 - 180
  • [15] Possibilistic C-Means Clustering Using Fuzzy Relations
    Zarandi, M. H. Fazel
    Kalhori, M. Rostam Niakan
    Jahromi, M. F.
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1137 - 1142
  • [16] Tensor-Based Possibilistic C-Means Clustering
    Benjamin, Josephine Bernadette M.
    Yang, Miin-Shen
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (10) : 5939 - 5950
  • [17] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [18] Similarity Based Fuzzy and Possibilistic c-means Algorithm
    Zhang, Chunhui
    Zhou, Yiming
    Martin, Trevor
    PROCEEDINGS OF THE 11TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2008,
  • [19] Possibilistic and fuzzy c-means clustering with weighted objects
    Miyamoto, Sadaaki
    Inokuchi, Ryo
    Kuroda, Youhei
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 869 - +
  • [20] An enhanced possibilistic C-Means clustering algorithm EPCM
    Xie, Zhenping
    Wang, Shitong
    Chung, F. L.
    SOFT COMPUTING, 2008, 12 (06) : 593 - 611