Magnetisation oscillations by vortex-antivortex dipoles

被引:1
|
作者
Komineas, Stavros [1 ]
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
关键词
Landau-Lifshitz equation; Magnetic vortex; Vortex-antivortex pairs; Spin-transfer oscillators; Merons; TOPOLOGICAL SOLITONS; DYNAMICS; FERROMAGNETS;
D O I
10.1016/j.physd.2014.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vortex-antivortex dipole can be generated due to current with in-plane spin-polarisation, flowing into a magnetic element, which then behaves as a spin transfer oscillator. Its dynamics is analysed using the Landau-Lifshitz equation including a Slonczewski spin-torque term. We establish that the vortex dipole is set in steady state rotational motion due to the interaction between the vortices, while an external in-plane magnetic field can tune the frequency of rotation. The rotational motion is linked to the nonzero skyrmion number of the dipole. The spin-torque acts to stabilise the vortex dipole at a definite vortex-antivortex separation distance. In contrast to a free vortex dipole, the rotating pair under spin-polarised current is an attractor of the motion, therefore a stable state. The details of the rotating magnetisation configurations are analysed theoretically and numerically. The asymptotic behaviour of the rotating configurations provide results on their expected stability. Extensive numerical simulations reveal three types of vortex-antivortex pairs which are obtained as we vary the external field and spintorque strength. We give a guide for the frequency of rotation based on analytical relations. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 50 条
  • [31] Vortex-antivortex creation and annihilation on CoFeB crosstie patterns
    Gomez, R. D.
    Ma, J. S.
    Arkilic, A.
    Chung, S. H.
    Krafft, C.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [32] Deterministic propagation of vortex-antivortex pairs in magnetic trilayers
    Hierro-Rodriguez, A.
    Quiros, C.
    Sorrentino, A.
    Valcarcel, R.
    Estebanez, I.
    Alvarez-Prado, L. M.
    Martin, J. I.
    Alameda, J. M.
    Pereiro, E.
    Velez, M.
    Ferrer, S.
    APPLIED PHYSICS LETTERS, 2017, 110 (26)
  • [33] Multiple vortex-antivortex pair generation in magnetic nanodots
    Gaididei, Yuri
    Kravchuk, Volodymyr P.
    Sheka, Denis D.
    Mertens, Franz G.
    PHYSICAL REVIEW B, 2010, 81 (09)
  • [34] Study the Behavior of Vortex-Antivortex Bundles in He II
    Alamri, Sultan Z.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (04): : 1495 - 1498
  • [35] Stability of vortex-antivortex molecules in mesoscopic superconducting triangles
    Misko, VR
    Fomin, VM
    Devreese, JT
    Moshchalkov, V
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 404 (1-4): : 251 - 255
  • [36] Vortex-antivortex pair control in quadrupole Gaussian beams
    Ferrando, Albert
    Popiolek-Masajada, Agnieszka
    Masajada, Jan
    Markevich, Raman
    Khoroshun, Anna
    OPTICS EXPRESS, 2023, 31 (14) : 23444 - 23458
  • [37] Vortex-antivortex pair creation in black hole thermodynamics
    Ahmed, Moaathe Belhaj
    Kubiznak, David
    Mann, Robert B.
    PHYSICAL REVIEW D, 2023, 107 (04)
  • [38] Vortex-antivortex pairs induced by curvature in toroidal nanomagnets
    Vojkovic, Smiljan
    Carvalho-Santos, Vagson L.
    Fonseca, Jakson M.
    Nunez, Alvaro S.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (11)
  • [39] Competing symmetries in superconducting vortex-antivortex "molecular crystals"
    Bending, S. J.
    Neal, J. S.
    Milosevic, M. V.
    Potenza, A.
    Emeterio, L. San
    Marrows, C. H.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2008, 468 (7-10): : 518 - 522
  • [40] Released power in a vortex-antivortex pairs annihilation process
    Aguirre-Tellez, Cristian
    Rincon-Joya, Miryam
    Barba-Ortega, Jose Jose
    UIS INGENIERIAS, 2021, 20 (01): : 153 - 159