Magnetisation oscillations by vortex-antivortex dipoles

被引:1
|
作者
Komineas, Stavros [1 ]
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
关键词
Landau-Lifshitz equation; Magnetic vortex; Vortex-antivortex pairs; Spin-transfer oscillators; Merons; TOPOLOGICAL SOLITONS; DYNAMICS; FERROMAGNETS;
D O I
10.1016/j.physd.2014.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vortex-antivortex dipole can be generated due to current with in-plane spin-polarisation, flowing into a magnetic element, which then behaves as a spin transfer oscillator. Its dynamics is analysed using the Landau-Lifshitz equation including a Slonczewski spin-torque term. We establish that the vortex dipole is set in steady state rotational motion due to the interaction between the vortices, while an external in-plane magnetic field can tune the frequency of rotation. The rotational motion is linked to the nonzero skyrmion number of the dipole. The spin-torque acts to stabilise the vortex dipole at a definite vortex-antivortex separation distance. In contrast to a free vortex dipole, the rotating pair under spin-polarised current is an attractor of the motion, therefore a stable state. The details of the rotating magnetisation configurations are analysed theoretically and numerically. The asymptotic behaviour of the rotating configurations provide results on their expected stability. Extensive numerical simulations reveal three types of vortex-antivortex pairs which are obtained as we vary the external field and spintorque strength. We give a guide for the frequency of rotation based on analytical relations. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 50 条
  • [21] Nucleation of a vortex-antivortex pair in the presence of an immobile magnetic vortex
    Kravchuk, Volodymyr P.
    Gaididei, Yuri
    Sheka, Denis D.
    PHYSICAL REVIEW B, 2009, 80 (10):
  • [22] Structure formation, superfluid velocity patterns, and induced vortex-antivortex oscillations and rotations in microcavity polaritons
    Haug, H.
    Doan, T. D.
    Tran Thoai, D. B.
    PHYSICAL REVIEW B, 2015, 91 (19)
  • [23] Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles
    Misko, VR
    Fomin, VM
    Devreese, JT
    Moshchalkov, VV
    REALIZING CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPINTRONICS, 2005, : 191 - 196
  • [24] Quantum dynamics of vortex-antivortex pairs in a circular box
    Penna, V
    QUANTIZED VORTEX DYNAMICS AND SUPERFLUID TURBULENCE, 2001, 571 : 445 - 452
  • [25] VORTEX-ANTIVORTEX CRYSTALLIZATION IN THIN SUPERCONDUCTING AND SUPERFLUID FILMS
    GABAY, M
    KAPITULNIK, A
    PHYSICAL REVIEW LETTERS, 1993, 71 (13) : 2138 - 2141
  • [26] RADIATION-PATTERNS FROM VORTEX-ANTIVORTEX ANNIHILATION
    HECHT, MW
    DEGRAND, TA
    PHYSICAL REVIEW D, 1990, 42 (02): : 519 - 528
  • [27] A VORTEX-ANTIVORTEX PAIRS TRIGGERED JOSEPHSON SHIFT REGISTER
    CIRILLO, M
    MERLO, V
    JOURNAL OF APPLIED PHYSICS, 1995, 78 (08) : 5053 - 5057
  • [28] POSSIBLE ULTRASONIC EVIDENCE FOR THE EXISTENCE OF VORTEX-ANTIVORTEX PAIRS
    FREDRICKSEN, HP
    LEVY, M
    ASHKIN, M
    GAVALER, JR
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1982, 79 (1-4): : 351 - 359
  • [29] Topology-dependent stability of vortex-antivortex structures
    Han, Hee-Sung
    Lee, Sooseok
    Jung, Min-Seung
    Kim, Namkyu
    Chao, Weilun
    Yu, Young-Sang
    Hong, Jung-Il
    Lee, Ki-Suk
    Im, Mi-Young
    APPLIED PHYSICS LETTERS, 2021, 118 (21)
  • [30] RENORMALIZATION EFFECTS OF VORTEX-ANTIVORTEX PAIRS IN LAYERED SUPERCONDUCTORS
    SCHEIDL, S
    HACKENBROICH, G
    EUROPHYSICS LETTERS, 1992, 20 (06): : 511 - 516